국가교통데이터베이스

KIDB

Korea Transport Database Newsletter

http://www.ktdb.go.kr

2013 vol.13 재미있는 통계이야기 거리대별 철도 및 고속버스 수송인원 분포 (홍성표 _ 연구원 | 황순연 _ 부연구위원 | **p.2** FOCUS 2012년 대중교통 네트워크 예비조사 (연지윤 _ 부연구위원 | 김은미 _ 연구원 | **p.3**

 SPECIAL REPORT 2012년 교통유발원단위조사 기초분석결과
 (황순연 _ 부연구위원 | 김근덕 · 오연선 _ 연구원)
 p.4

DB TREND ADB(Asian Development Bank) 소개 (오연선 _ 연구원 | 황순연 _ 부연구위원) p.6

NEWS 2012년 국가교통조사 및 DB 구축사업 성과발표회 개최 외 p.8

재미있는 통계이야기

홍성표 _ 한국교통연구원 연구원 | 황순연 _ 한국교통연구원 부연극

■ 100km 미만 ■ 200km미만 ■ 300km미만 ■ 400km미만 ■ 400km이상

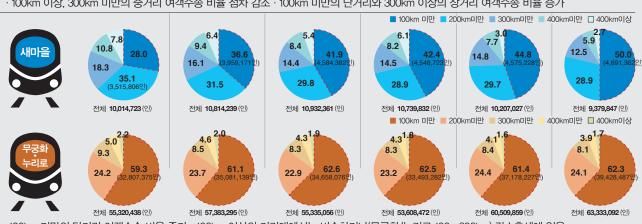
거리대별 철도 및 고속버스 수송인원



- KTDB 홈페이지 자료제공 및 교통산업서비스지수 산정을 위해 매 분기별 관련기관으로부터 수집하는 수송실적 자료(http://www.ktdb.go.kr/)
- 🖶 고속버스(2007~2012년) 전국고속버스운송사업조합 내부자료 👂 철도(2012년) 한국철도공사 내부자료(수도권전철 제외) · 거리는 수송인+km를 수송인원으로 나누어서 산출함 ※ 매 분기 익월 수집한 잠정치 자료로 원출처의 최종 공표자료와는 차이가 발생할 수 있음 ■ 한국철도공사, 「철도통계연보」, 각년도.(2007~2011년)

거리대별 수송인원 변화

· 100km 미만의 단거리 수송인원 비율은 점차 감소하는 추세에 있음 · 100km 이상. 400km 미만의 거리의 수송인원 비율이 증가하는 추세이지만 400km 이상의 장거리 수송인원은 2007년에 비해 2012년 큰 폭으로 감소하였음



단거리(100km 미만) 수송인원 비율은 점차 감소하는 추세이나 2012년 ITX-청춘의 개통으로 단거리 비율 증가 · 200km 이상, 300km 미만의 중거리 승객수송 비율 역시 점차 감소 · 400km 이상의 장거리 승객수송 비율이 증가하는 추세에 있음

철도 열차종류별 거리대별 수송인원 변화

· 100km 이상, 300km 미만의 중거리 여객수송 비율 점차 감소 · 100km 미만의 단거리와 300km 이상의 장거리 여객수송 비율 증가

100km 미만의 단거리 여객수송 비율 증가 · 100km 이상의 거리대에서는 비슷하거나(무궁화/누리로 100~200km) 감소추세에 있음

2012년 월별 거리대별 수송인원 분포

100km 미만의 단거리 수송비율은 3~6월과 9~11월에 높은 수준임 · 300km 이상의 장거리 수송비율은 12~2월, 7~8월에 높은 수준임

2012년 대중교통 네트워크 예비조사

조사 개요

대중교통 네트워크 예비조사는 '13년 국가교통조사 사업을 통해 구축하게 될 전국 대중교통 네트워크 노선 DB 구축을 위한 사전 조사로, '12년 5월 기준으로 우리나라 일반버스"의 노선현황을 파악하고, 추후 대중교통 분석용 네트워크 구축시 필요한 주요 입력 변수를 수집 및 관리하기 위한 DB설계(안)을 작성하는데 그 목적이 있음. 다음은 본 예비조사의 주요 연구 내용임

- · 본 조사에서는 그 동안 정확한 노선수 조차 파악이 안 되고 있던 일반버스의 노선현황을 파악하는데 중점을 둠
- · 노선 DB 설계(안)을 작성하고, 시범 조사 지역(중소도시 도시 1곳, 농어촌 지역 1곳)을 선정하여 실제로 설계된 노선 DB(안)에 따라 일반버스의 노선 DB 구축
- · 13년도 전국 조사에 대비하여 일반버스 조사 물량에 기초한 인력 투입 계획 수립
- 1) 일반버스는 자동차운수사업법에 따라 특정 지역내를 운행하는 시내버스, 농어촌버스, 마울버스, 공항버스를 포함하는 개념임, 본 현황에서는 노선별로 시점에서 회차 지점까지의 단일 방향에 대해서만 우선 고례순환선 제외의 경우)

| 일반버스 노선 기초 현황 |

• 일반버스 노선 기초 현황

- -'12년 5월 기준, 전국을 대상으로 일반버스 노선 운행정보에 관한 내용을 지자체 및 관련기관 자료협조 공문을 통하여 수행
- -일반버스의 총 노선수는 옆 그림에서와 같이 12,377개로, 경기도가 2,631개로 가장 많은 것으로 나타났고, 버스종류별로는 대부분의 지역에서 시내버스의 비중이 절반 이상으로 나타남
- -BMS/BIS 구축현황은 163개 지자체 중 64개(39.3%)

| 일반버스 노선 DB 설계(안) |

• 일반버스의 노선 DB는 승차 및 수단의 출발/도착을 표현하는 노드(in_bus_node)와 노선정보 (in_bus_route) 테이블로 구성

	(II _DOD_TOULD) - II VI E T 1 0						
	노드 테이블	일반버스의 운행시점, 정류장, 종점 등의 명칭, 이름, 위경도 좌표 등					
	노선정보 테이블	일반버스의 운행과 관련된 배차간격, 운행대수, 첫차시긴 막차시간 등					
	노드 유형	「자동차여객운수사업법」에서 제시하는 일반버스의 노선형태 정의					
	노선 정류장 리스트	버스노선의 정류소간의 조합 및 시점으로부터 정차 순서 정의					

Table Name	III_DUS_TOUTE			Table Name	III_DUO	III_DUS_TOUTE_Station_list					
ROUTE_ID	Char	PK	NN	•—	ROUTE_ID	Char	PK/FK	NN			
ROUTE_NAME	Char				NODE_ID	Char	FK	NN			
ROUTE_NUMBER	Char				NODE_SEQUENCE	Int		NN			
ROUTE_TYPE	Char		NN								
COMPANY	Char				Table Name		_bus_no				
ADMIN_NAME	Char				NODE_ID	Char	PK	NN			
CON_DATE	Date			ľ	NODE_NAME	Char		NN		code	in_bus_node_type
DEL_DATE	Date				NODE_TYPE	Char		NN	•	ICN1	시내버스(중앙)
S_NODE_ID	Char	FK	NN	•	X_COORD	Double		NN		ICIVI	\ \ \ \ \ \ \ \ \ \ \ \ \ \
E_NODE_ID	Char	FK	NN	•	Y_COORD	Double		NN		ICN2	농어촌버스(중앙)
start_time_first_bus	Time		NN		TRANSFER_TYPE	Char		NN		ICN3	마을버스(중앙)
start_time_last_bus	Time		NN		passenger_count_in	Int					-12-1-(00)
BUS_COUNT	Int		NN		passenger_count_ou					ICN4	공항버스(중앙)
BUS_FREQUENCY	Int		NN		CON_DATE	Date		NN		INR1	시내버스(일반)
bus_peak_headway_week	Time		NN		DEL_DATE	Date					
bus_peak_headway_sat	Time		NN		DESCRIPTION	Char				INR2	농어촌버스(일반)
bus_peak_headway_sun	Time		NN						ᅟᄂ	INR3	마을버스(일반)
bus_non-peak_headway_week	Time		NN								
bus_non-peak_headway_sat	Time		NN							INR4	공항버스(일반)
bus_non-peak_headway_sun	Time		NN							INC13	시내버스+마을버스(중앙)
DISTANCE_EMPTY_BUS	Double		NN								
TERMINAL_TIME	Time		NN							INC23	농어촌버스+마을버스(중앙)
DISTANCE_TOTAL	Double		NN							INC14	시내버스+공항버스(중앙)
DWELLING_TIME1,2,3	Time		NN							III III I	
TRANSFER_TIME1,2,3	Time		NN							INR13	시내버스+마을버스(일반)
BUS_CAPACITY	Int		NN							INR23	농어촌버스+마을버스(일반)
CIRCLE_ROUTE	Char		NN							INR14	LICHAL A TOSSAL A (OTHE)
DESCRIPTION	Char									INR14	시내버스+공항버스(일반)

※위 그림은 일반버스의 노선 DB 설계 테이블간 연결 관계를 다이어그램(Diagram)으로 표시한 것임

| 대중교통 네트워크 노선 DB 구축 계획(안) |

- 본 조사에서는 시범 조사 지역을 대상으로 수집한 조사시간을 기초로 전국 일반버스의 총 노선수 및 BMS(Bus Management system)/BIS(Bus Information System) 비구축 노선수 기준으로 조사 투입 인력에 대한 예상 물량을 산출하였음
- 물량 산출 과정은 전국 지역별 왕복기준 노선당 평균 조사시간을 계산한 후, 시범조사 지역을 통해 수집한 1일 조사/인 가능 노선수를 이용하여 총 투입 인력 계산

노선당 실제 조사시간

전체 일반버스 노선 DB구축 조사 인력이 총 5,108인 · 일이 필요할 것으로 예상 | BIS/BMS 미구축된 노선 조사 인력이 총 2,441인 · 일이 필요할 것으로 예상

결론

• 본 예비조사에서는 일반버스 노선 현황 파악시 타 수단(철도, 시외버스 등)에서 사용하는 기준인 편도 운행 기준으로 조사하였으나, 일반버스(순환버스 및 농어촌 버스)의 특성을 감안하여 노선에 대한 개념을 좀 더 구체적으로 정의하여 현황을 파악할 필요가 있음 • 기존 BIS/BMS가 구축된 지자체에 대해서는 협조를 통해 최소한의 인력 투입으로 정류소 위치 및 노선 DB를 구축해야 하는 등 구축 대상 기준에 따라 전략적이고, 단계적인 구축 계획을 수립하는 것이 필요가 있음 • 본 예비조사에서 정류소 위치 파악을 위해 사용했던 방식은 인력 집중식 조사로 비효율적이므로 버스 노선이 복잡하고 비교적 관리가 잘되는 특별 · 광역시의 노선 DB 구축시에는 조사 방법을 달리할 필요가 있음 • 본 예비조사에서 분석용 네트워크 구축시 필요한 DB 항목 중 하나인 요금체계 관련정보가 포함되지 않았으나 전국 대중교통 노선 DB 구축시 요금관련 항목을 추가로 포함시켜야 함

3

SPECIAL REPORT

2012년 교통유발원단위조사 기초분석결과

한국교통연구원 국가교통DB센터에서는 국가통합교통체계효율화법(제12조, 제15조, 제17조) 및 도시교통정비촉진법(제51조)의 법적 근거를 바탕으로 2012년 10월부터 2013년 3월까지 교통유발원단위조사를 시행하고 기초분석을 수행하였다.

조사 개요

교통유발원단위조사는 교통유발 원단위 산정을 목적으로 시설물 용도 특성별로 유발되는 사람 및 차량의 통행량과 통행특성을 파악하기 위한 조사이며, 크게 시설물현황조사, 사람·차량 유출입통행량조사, 이용자 통행행태조사의 3가지 조사로 구성된다. 이에 용도를 대표하는 시설물을 대상으로 표본 조사방식으로 수행되었다.

시간적 범위

공간적 범위

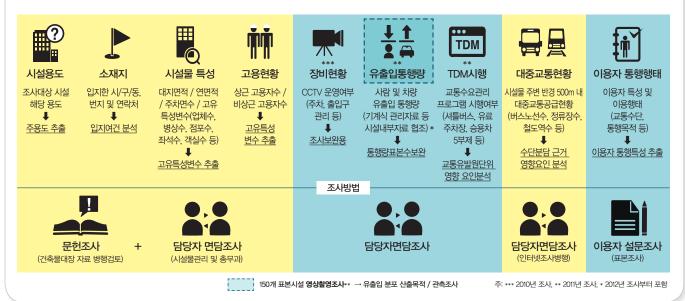
2012년 10월 ~ 2013년 3월 (3월 보완조사)

(조사기간 중 휴가, 이벤트, 기상상태, 시설물의 특성 등에 따라 비정상적인 교통수요가 발생하는 시기는 조사기간에서 제외함(12월 중순~1월 초)) 전국 인구규모 **10**만 이상 도시 (**71**개) 대상

(표본 도시: 전국 인구규모별 18개 시: [서울/부산/인천/대구/대전/광주/ 울산/창원/수원//청주/전주//제주/파주//춘천/이산/양산/목포/경산])

내용적 범위

시설물현황조사


- 시설물현황조사는 시설물별 시설용도, 소재지, 건물특성, 고용지수 등을 방문을 통하여 조사하고 시설물 주변 대중교통 서비스 현황을 현장관측을 통하여 조사
- 5개 용도시설 최소 2,000개 표본시설(모집단 대비 95% 신뢰수준 ±5%p 허용오차) 대상

유출입통행량조사

- 유출입통행량조사는 특정 시설물에 대하여 유출입 사람수와 치종별 치량수 및 재차인원 등을 관측조사
- 5개 용도 표본시설물 중 150개 표본 시설 (301시설 · 일) 관측조사

이용자통행행태조사

- 이용자통행행태조사는 설문조시를 통하여 이용자의 성별 · 연령, 통행목적, 교통수단, 주차 · 하차 위치, 재차인원 등을 조사
- 150개 시설 53,994부(유효설문지) 시설별 200부 내외 조사

조사 특성 및 활용

- 2012년 교통유발원단위조사의 특징은 대표 시설물을 대상으로 사람/차량 유출입통행량조사는 영상촬영조사 후 계수원 계수 방식을 적용하고, 전체 조사대상시설에는 시설담당자 설문조사결과와 함께 시설물 상시자료(주차관제자료, 입출입관리자료 등) 제공 협조방식으로 수행되었다. 2013년에는 관측조사자료와 내부조사자료에 대한 상세분석을 수행할 예정이다.
- 시설물을 대상으로 교통이용특성을 조사하는 교통유발원단위조사 결과는 교통유발원단위로 산출되어, 교통수요예측 및 교통영향 분석·개선대책제도, 교통유발금제도 등과 같은 교통수요관리를 위한 근거자료로 활용될 수 있다.

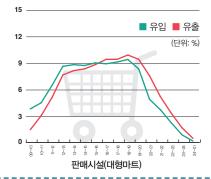
교통브리프13호 인쇄.indd 4

13. 5. 21. 오후 1:42

주요 조사결과

교통유발원단위조사 분석의 전제

- 과거조사자료와의 일관성 측면에서 150개 표본시설 관측조사(301시설 · 일) 자료 대상으로 분석하였다.
- 교통유발원단위 산출시 가중평균법을 적용하여 용도별/조사시기별 비교시 일관성을 유지하였다.


주요 5대 용도시설 교통유발원단위 비교_평일/ 주말기준

- 평일기준 <u>사람유발원단위</u>: 판매, 의료, 관람집회, 업무, 숙박 순 | <u>차량유발원단위</u>: 판매, 의료, 업무, 관람집회, 숙박 순으로 분석되었다.
- 주말기준 교통유발원단위(사람/차량): 요일별 비교 결과 토〉일 〉 평일 순으로 나타났다.

용도 시설별 교통유발량 시간대별 분포

- 용도별 교통유발량 시간대 분포 및 첨두시간에 차이가 나타났다.
- 숙박, 의료(응급, 장례식장), 대형마트
 (일부), 영화관(심야)과 같이 24시간
 운영시설의 경우 주야율이 중요한 것으로
 분석되었고, 관람집회시설은 행사전후
 집중 경향이 뚜렷이 나타났다.

■ 평일 ■ 토요일 ■ 회전율(단위: 대/면)

평일

← 업무시설 →

평일

◆ 의료시설

용도 시설별 주차특성 분석결과

- 용도 시설별 주차특성 분석결과 용도별,
 요일별 차이가 크게 분석되었다.
- 평균주차시간은 업무시설과 관람시설이 가장 길게 조사되었으며, 주차회전율은 의료시설, 판매시설의 특성이 고려되어 다른 시설보다 더 높게 분석되었다.

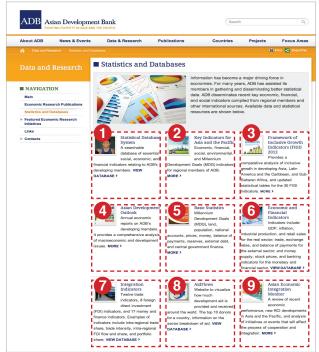

용도시설 이용특성 분석결과

• 용도시설 이용목적(%) 특성 비교 결과 시설물의 주용도의 이용비율이 주로 높으며, 용도별로는 중복 목적의 비중도 상당히 높게 분석 예를 들어 판매시설의 경우 쇼핑이 55~60% 수준으로 나타났으며, 다양한 목적으로 이용하는 비율도 9.6~13.1%로 나타났다.

과거 조사자료와의 비교

• 용도별 세부대상 시설차이로 인하여 변화 규모에는 차이가 있으나, 전반적으로 교통유발원단위가 증가 추세로 나타났다.

DBTRFND


ADB(Asian Development Bank)소개

아시아 개발은행(ADB_Asian Development Bank)은 1966년 아시아 및 태평양 지역의 국가들이 빈곤으로부터 해방되는 것을 목표로 설립되어 개발도상국과 관련 국가들의 파트터쉽을 통해 빈곤을 경감시키고 지속가능하고 포괄적인 성장을 이끌고 있다. 구체적으로 기반시설, 의료서비스, 재정 및 공공 행정시스템에 대한 투자 및 기후변화에 대비하고 천연자원의 효과적인 관리를 지원함으로써 전세계적으로 통합되고 진화하는 경제 발전을 돕고 있다. http://www.adb.org

ADB 자료 및 분석부문

ADB에서 상세한 정책 대안을 마련하고 현황을 정확하게 파악하기 위해 경제연구 및 통계작성을 수행하고 결과를 배포한다.

- ① Statistical Database System(통계DB시스템): ADB 개발도상국의 필수적인 사회, 경제, 재정 지표에 대한 통계 데이터베이스 검색시스템
- ② Key Indicators for Asia and the Pacific(아시아태평양지역 주요지표):

 ADB 연간통계책자로써 Millennium Development Goals (MDG)를
 기준으로 구성되어 국가별 테이블 제공
- Framework of Inclusive Growth Indicators 2012: Key Indicators for Asia and the Pacific(FIGI 2012, 성장지표구조 2012: 아시아 태평양지역 주요지표): 가입국 및 라틴 아메리카 등 국가들과 성장 비교분석 및 FIGI지표 객신 제공
- Asian Development outlook (아시아 개발 개요): 가입국에 대한 거시경제 및 개발 이슈에 대한 총체적인 분석제공
- Basic Statistics(기초통계): 국토, 인구, 국가계정 등 전반적인 통계제공
- (Economic and Financial Indicators(경제 및 재정 지표): GDP, 인플레이션, 무역, 환율 등 금융 및 재정 부문 지표
- Integration Indicators (통합지표): 12개의 무역지표, 8개의 외국직접 투자지표(FD):foreign direct investment, 17개의 통화 및 재정 지표 제공
- ③ AidFlows(개발원조금 흐름): 개발원조금의 유출입 규모를 시각화하여 제공하는 웹사이트
- Asian Economic Integration Monitor(아시아 경제통합 모니터):
 아시아태평양지역의 RCI(RCI: Regional Cooperation and Integration)
 개발과 경제부문 실적 검토 및 협력과 통합에 영향을 주는 요인에
 대한 분석

6

Statistical Database System(SDBS, 데이터베이스 통계시스템)

데이터베이스 통계시스템은 주요 사회, 경제, 재정 지표에 대한 통계검색 데이터베이스로써 해당 지역의 개발도상국가들에 대한 정보제공 및 개발단체와 정책입안자의 수행업무를 지원하기 위한 목적으로 구축되어 1988년 이후 자료를 시스템을 통해 생성하고 활용할 수 있다.

: 이용자가 필요로 하는 국가, 주제, 연도 선택 : 결과 산출 - 출력 또는 저장하여 분석

분야별 연구: 교통부문

ADB에서는 가입국들이 안전하고 환경친화적인 교통시스템을 통해 교통기간시설 및 서비스 제공 업무를 지원하기 위해 교통부문에서 지향하는목표에 대한 연구 및 분석을 수행한다. 교통부문은 ADB의 주요한 영역중하나로 지난 40여년간 ADB차관의 32%를 운영하며 1966년 이후총356억 달러를 투자해왔다.

주요 주제 분야

지속가능한 교통계획 | 도시교통 | 도로안전 및 사회적 지속가능성 | 기후변화 | 지역협력 및 통합 | 지속가능한 개발로의 전환 | 재정 및 민간투자

주요 관심분야 (지속가능한 교통으로 나아가기 위한 교통시스템 개발 및 세부요소에 대한 연구)

- Road Safety and Social Sustainability(도로 안전 및 사회적 지속기능성):
 도로 안전을 향상시키기 위한 ADB 지원 정책과 사회적 소외층에 대한 교통시설 및 서비스 활층
- Urban Transport(도시교통): 도시교통문제를 해결하기 위해 ADB의 새로 운 접근 방식(대중교통시스템, 비동력 교통시설, 통합도시교통계획, 수요 관리, 교통관리체계 등)
- Addressing Climate Change in Transport(교통부문 기후변화 완화): 아 시아지역의 온실가스 배출량이 커짐에 따라 이에 대한 교통부문에서의 기후변화 완화를 위한 노력과 기조에 대한 적응방법(교통수요 감소, 에 너지 효율적인 교통수단으로 전환, 정보기술을 활용한 차량기능 항상 등)
- Cross Border Transport and Logistics(접경지역 교통 및 물류): 지역경 제통합을 위한 교통부문의 역할을 증대시키기 위한 지원 및 국가간 협 려세계 그초

주요 주제별 내용

· ADB Economics Working Papers

경제 부분 이슈 및 추세에 대한 심층분석 제시

· Asia Economic Monitor

반년을 기준으로 10개 가입국의 경제 및 정책적 이슈에 대한 평가를 수록

Asian Development Outlook

과거 경제적 성과를 분석하고 아시아 태평양지역 국가에 대한 장래 2년간 예측 제시

Asian Development Review

개발이슈에 대한 정보를 제공하고 정책 수립 시 활용하도록 발간되는 아시아 경제개발에 대해 국제적인 저널

Key Indicators

경제, 재정, 사회 및 환경 등 부문별 주요 지표 제시

Regional Economic Integration Working Paper Series
 경제 부문에 관한 주제를 심층적으로 분석 제시

시사점

ADB에서는 아시아 태평양 지역 개발도상국의 경제 발전 및 지속가능한 성장을 위한 지원에 주력하며 그 중 교통부문은 발전 지원 목표를 수행하기 위한 주요한 역할을 수행한다. 안전하고 환경친화적인 교통시스템 구축을 위해 교통기간시설 및 서비스를 지원하고 교통부문에서 지향하는 목표에 대한 연구 및 분석수행 결과를 활용할 수 있으며 관련 통계자료를 수집할 수 있다.

7

2012년 국가교통조사 및 DB 구축사업 성과발표회 개최 외

보도자료

국가교통DB 구축사업 성과발표회 개최 관련 언론보도

2013년 4월 26일(금) 일자

주최 한국교통연구원 국가교통DB센터

'교통 SOC 타당성 분석의 기초', '국가교통DB 개선' 등 내용

홈페이지 http://www.ktdb.go.kr / http://www.chosun.com (조선일보) 외 7개 내용

언론사

승용차 및 대중교통관련 각종 비용 분석결과 발표

2013년 4월 25일(목)

한국교통연구원 국가교통DB센터

승용차-대중교통비용 상대격차 커져, 대중교통이용부담 상대적 가중 내용

홈페이지 http://www.molit.go.kr / http://www.ktdb.go.kr

과거 10년간 교통행태 분석과 교통정책 시사점 연구 발표

2013년 4월 1일(월) 일자

국토교통부, 한국교통연구원 국가교통DB센터 주최

'교통안전' 양극화, 10년새 심해져 내용

홈페이지 http://www.ktdb.go.kr / http://www.kukinews.com

국내행사안내

2012년 국가교통조사 및 DB 구축사업 성과발표회 개최

2013년 4월 25일(목) 일자

더케이서울호텔((구)서울교육문화회관) 장소 한국교통연구원 국가교통DB센터 주관

2012년 국가교통DB구축사업 성과발표 및 사업참여 위탁업체

부스운영

대중교통 수요분석 현황진단 및 향후 개선방안 최종보고회

일자 2013년 5월 10일(금)

한국교통연구원 회의실 장소

한국교통연구원 국가교통DB센터 주관

대중교통 수요분석 현황진단 및 향후 개선방안 최종 결과 보고

도로통행비용함수 구축 사업 최종보고회

2013년 5월 3일(금) 일자

한국교통연구원 회의실 장소

한국교통연구원 국가교통DB센터 주관

내용 도로통행비용함수 구축결과 최종보고

센터행사안내

한국 스마트카드사와 MOU 체결

일자 2013년 5월 2일(목)

하군스마트카드사 장소

주관 한국교통연구원 국가교통DB센터

한국스마트카드사와 교통정보 활용을 위한 MOU 체결

통계품질진단관련 심층면접조사 회의

일자 2013년 5월 9일(목)

서울역 회의실

한국교통연구원 국가교통DB센터

국가승인통계에 대하여 외부 통계전문가들이 품질진단을 시행, 국가교통DB센터의 연구진과 외부 교통관련 전문가들 간에 심층

면접조사 시행

빅데이터 시범사업 관련 업무회의

일자 2013년 5월 2일(목)

장소 현대엠엔소프트

주관 한국교통연구원 국가교통DB센터

내용 빅데이터 시범사업(R&D) 제안건 논의 및 현대엠엔소프트와의 공동

연구협약 관련 향후 협력 방안 회의

전국 차량이용실태조사

2012년 10월~2013년 6월

장소 전국(16개 시도)

주최 한국교통연구원 국가교통DB센터

지역별ㆍ차종별ㆍ연령별ㆍ연료별 차량이용행태 및 주행거리 자료 조사 내용

자료안내

주최: 한국교통연구원 국가교통DB센터 홈페이지: http://www.ktdb.go.kr

■ 2012년 국가교통조사 및 DB 구축사업 성과발표회 자료집 배포

: 내용 2012 국가교통통계 및 국가교통통계해설, 2014~2018 국가교통 조사계획(안), 대중교통수요분석의 현황진단 및 향후 개선방안, KTDB뉴스레터 통합본

: 일자 2013년 5월

■2011년 국가교통수요조사 및 DB구축사업 구축자료 배포

: 내용 2010년 기준 및 장래목표 연도별 지역간 여객/화물 기종점통행량(O/D), 교통분석용 네트워크

: 일자 2012년 11월

■ 2011년 국가교통수요조사 및 DB구축사업 최종보고서

: **내용** KTDB 2011년 사업 결과보고서

: 일자 2012년 11월

발행일 2013년 5월 15일 발행처 한국교통연구원 발행인 김경철 주소 (우)411-701 경기도 고양시 일산서구 고양대로 315 한국교통인구의 전화 031-910-3114(3102) 팩스 031-910-3233 홈페이지 http://www.koti.re.k 기획 국가교통DB센터 : 김찬성, 황순연, 오연선 문의 ktdbnews@ktdb.go.kr 전화 031-910-3114(3102) 팩스 031-910-3233 홈페이지 http://www.koti.re.kr | http://www.ktdb.go.kr

교통브리프13호 인쇄.indd 8