목 차

뀽	약

제.	1장	과업의 개요	1
7	제1절	과업의 배경 및 목적 / 3	
7	제2절	RFID 개요 / 5	
제2	2장	항만물류분야 RFID 도입 현황	9
7	제1절	RFID기반의 항만물류효율화 사업 / 11	
7	제2절	물류거점 정보화 사업 / 23	
7	제3절	추진예정 사업 / 29	
제:	3장	RFID 정보 흐름 분석	33
7	제1절	RFID Tag 기술 개요 / 35	
7	제2절	RFID 정보흐름 프로세스 / 43	
제4	4장	RFID 정보의 국가교통DB 활용방안	45
7	제1절	GCTS 축적 정보 활용 가능성 / 47	
7	제2절	RFID 정보 활용 실태 / 50	
제:	5장	결론 및 정책제언	61
7	제1절	결론 / 63	
7	제2절	정책제언 / 64	

표 목 차

<표 1- 1> 주파수 대역별 RFID시스템 정의	7
<표 2- 1> 컨테이너 추적용 RFID 인프라	18
<표 2- 2> 컨테이너 부착 방법에 따른 태그 종류	20
<표 2- 3> RFID기반 물류거점정보시스템 구축 1단계 설치 톨게이트	25
<표 2- 4> RFID기반 물류거점정보시스템 구축 2단계 설치 대상 톨게이트	26
<표 2- 5> 국내 주요항만 ISPS Code 대상 및 출입현황	30

그림목차

<그림	1- 1>	RFID시스템 구성 요소 그림	8
<그림	2- 1>	GCTS 항만효율화 개념도	13
<그림	2- 2>	컨테이너 터미널 양적하 작업 비교	14
<그림	2- 3>	RTLS 기반의 YT 풀링 시스템 개념도	15
<그림	2- 4>	RFID 관련 주요 사업 추진 내역	16
<그림	2- 5>	RFID기반 항만물류가시성 모델 개념도	17
<그림	2- 6>	433Mhz 고정형 리더 설치 사진	19
<그림	2- 7>	일체형 태그 부착 방법	21
<그림	2- 8>	회수형 태그 부착 방법	21
<그림	2- 9>	국내 433Mhz RFID 인프라 설치 현황 ·····	22
<그림	2-10>	해외 433Mhz RFID 인프라 설치 현황 ·····	22
<그림	2-11>	물류거점정보화 사업	23
<그림	2-12>	RFID기반의 내륙물류거점정보시스템 개념도	24
<그림	2-13>	물류주체와 ULTS와의 정보 연계	26
<그림	2-14>	RFID를 활용한 게이트 자동화 구성도	28
<그림	2-15>	항만출입보안체계 확대 구축 계획	31
<그림	3- 1>	18000-6C 논리적 메모리 맵	39
<그림	3-2>	E-Seal 관련 국제 표준 구성	42
<그림	3-3>	GCTS 정보 흐름 프로세스	44
<그림	4- 1>	GCTS 구성도 ·····	48
<그림	4- 2>	GCTS 유관정보망 정보연계도	49
<그림	4-3>	RFID 게이트 반출·입 업무 구성도	51
<그림	4- 4>	게이트 반출·입 RFID 장비 설치사례	51
<그림	4- 5>	컨테이너 태그 부착 사례	52

<그림	4- 6>	컨테이너 태그 부착 사례	53
<그림	4- 7>	RFID 기반 화물 추적 시스템 개념도	54
<그림	4- 8>	CKD 방식의 자동차 물류 개념도	56
<그림	4- 9>	RFID 기반 화물 추적 시스템 개념도	56
<그림	4-10>	Global SCM 추진 배경 ······	57
<그림	4-11>	RFID 도입 전후 업무프로세스 비교	58
<그림	4-12>	RFID 도입 전후 CKD 센터내 업무비교	59

요 약

1. 연구의 개요

가. 연구의 배경

- 물류분야의 정보화는 지속적으로 발전하고 있는 IT기술의 발달과 물류흐름에 필수적 으로 수반되는 정보의 효율적인 처리에 대한 수요 증가로 계속해서 발전하여 왔음
 - RFID는 무선을 이용하여 정보를 주고받을 수 있기 때문에 여러 분야에서 널리 활용되고 있으며 물류분야에서도 빠르게 확산되고 있음¹⁾
- 현재 국내에서 컨테이너 물류분야에 사용되고 있는 RFID는 컨테이너를 운반하는 차량인식, 항만구역에 출입하는 인력 인식 및 컨테이너 기기 자체 인식분야에서 주로 적용
 - 컨테이너 터미널 및 ICD 등 물류거점에서는 반출입하는 컨테이너 정보를 사전에 입수해 놓은 다음 컨테이너를 적재한 차량이 게이트를 통과할 때 사전에 신고된 컨테이너 인지 여부를 확인하여 업무를 처리하고 있음
 - 게이트 통과시 과거에는 운전자가 소지하고 있는 바코드를 이용하여 운전자정보와 차량정보를 확인하였는데 지금은 차량 앞 부분에 부착한 RFID 및 관련정보를 인식 하는 방식으로 변경하여 좀 더 신속한 업무처리가 가능한 구조로 변경됨
- RFID는 바코드의 편리함과 무선 인식이라는 장점을 같이 갖고 있기 때문에 널리 확산될 것으로 기대되고 있으나 바코드에 비해 여전히 높은 태그 가격, 리더 및 태그에 사용되는 주파수의 표준화 필요, 어플리케이션의 부족 등이 확산을 막는 요인으로 지적되고 있음
 - 항만물류를 위주로 하여 도입이 시작되고 있는 RFID 기술과 여기서 발생하는 물류정 보를 교통DB에서 효율적으로 활용하는 방안을 모색할 필요가 있음

¹⁾ 무선인식(Radio Frequency IDentification): 일정한 주파수대역을 이용해 무선 방식으로 각종 인식정보 데이터를 주고받을 수 있는 시스템

나. 과업의 목적

- RFID 기술을 이용할 경우 화물의 위치정보, 화물추적, 화물의 상태정보 등 다양한 정보를 실시간으로 획득할 수 있을 뿐만 아니라, 유통비용과 물류비용을 절감할 수 있음
 - RFID 기술을 이용한 컨테이너화물 추적 정보가 적절하게 생성만 된다면 국가교통DB 사업의 수출입컨테이너화물 O/D 조사와 보완갱신에 활용이 가능할 뿐만 아니라 O/D의 신뢰도 제고에도 크게 기여할 것으로 판단됨
- 현재 컨테이너 물류분야에서 사용되는 있는 RFID에는 아직 화물의 내품정보 등 민감한 정보는 수록되어 있지 않고 있으며 컨테이너 번호와 같은 기기 인식을 위한 정보가 수록되어 있기 때문에 활용 방안 역시 컨테이너의 위치추적과 위치정보 확인 등에 집중 되어야 함
 - 고속도로 톨게이트, 대형 화주 거점, 화물 터미널, ODCY, ICD, 철도 터미널 등 주요 물류거점에 리더기 설치 등 기본 인프라가 구비되기 전까지는 리더기가 설치된 물류 거점간의 컨테이너 이동 확인 및 해당거점에서의 컨테이너 반출입 정보를 활용하는 방안을 마련하고자 함

2. 항만물류분야 RFID 도입 현황

가. 항만물류효율화 사업

- 1) 1단계 RFID기반의 항만물류효율화 사업
 - 국토해양부는 우리나라 항만을 최첨단의 유비쿼터스 항만으로 전환하기 위해 단계적 으로 사업을 추진
 - 'RFID기반의 항만효율화사업'을 통해 언제 어디서나 화물이동을 추적할 수 있게 돼 물류흐름과 '컨'터미널의 생산성을 개선할 목적으로 추진
 - "RFID 기반 항만물류효율화사업" 시범사업 수행 : '04.12 ~ '05.08
 - "RFID 기반 항만물류효율화사업" 1단계사업 수행 : '06.06 ~ '06.12

- 국토해양부에서는 2004년~2006년 총 55억 원의 예산을 투입하여 1단계 'RFID기반의 항만효율화사업' 추진
 - 인프라 구축을 위해 컨테이너 1만 개와 컨테이너 차량 2만대에 RFID 태그를 부착
 - RFID 리더 220여 대를 컨테이너 터미널 및 부산 주요간선도로 톨게이트 설치/완료
 - 미국 롱비치 한진터미널 등 해외 주요 3대 항만에 RFID 리더를 설치함
- 컨테이너 터미널의 운영정보시스템(TOS: Terminal Operation System)과 연계해 정보공유를 구현하였으며 운전자에게 문자서비스(SMS 서비스) 및 LED전광판을 설치해정확한 장치장 위치정보 제공
- RFID기반 게이트 자동인식시스템을 구축해 터미널 반출・입 시간을 최소화하면서 정보의 정확성을 향상시켰으며, RFID 시스템과 GCTS 연계를 통한 물류정보 연계
 - 즉. 차량/컨테이너 정보를 필요로 하는 유관기관시스템과 GCTS간 물류정보를 연계
 - 자산관리, 창고운영 효율화를 위해 화주/포워드/선사/운송사 등에 컨테이너 위치 추 적정보를 제공
 - 이 시스템과 컨테이너터미널의 TOS와 연계해 항만운영자동화, 컨테이너 보안서비스를 위한 기반 인프라를 제공
- 또한 소프트웨어 측면에서 GCTS와 터미널운영정보시스템(TOS), SP-IDC, Port-MIS 등 RFID 인프라 가 지능형 u-Network를 구축
- o 이와 함께 터미널 생산성 향상을 위해 컨테이너 터미널 한 곳을 대상으로 RTLS(Real Time Location System) 구축 및 겐트리크레인과 야드크레인에 RFID 장비를 설치해 타당성을 검토함
 - 선박으로부터 컨테이너 양적하 작업을 수행하는 컨테이너 크레인(CC)과 양적하 대상 컨테이너를 이송하는 야드트렉터(YT)간의 스케쥴링을 통하여 작업생산성을 증대하고 YT의 이동거리를 최소화 하여 탄소배출량을 절감하고자 최신의 위치기반 기술인 RTLS을 적용
- 1단계 사업에서는 '거점별 주체의 다양성', '예외 사항에 대한 신속한 대응의 어려움' 및 '관련 공공기관과의 원활한 업무 협조'가 문제점 및 애로사항으로 도출됨


2) 2단계 RFID기반의 항만물류효율화 사업

- 2차 사업은 1단계 사업성과를 기반으로 국내 전 항만으로의 u-물류 네트워크 인프라를 확장
 - "RFID 기반 항만물류효율화사업" 2단계사업 수행 : '07.07 ~ '07.12
 - · 전국 '컨'터미널 및 미주 중부 1개 '컨' 터미널에 RFID/USN기반 시스템 구축
 - 인천, 평택, 군산, 광양항의 컨테이너 전용터미널 게이트 자동화를 위한 RFID 인프라를 확산 구축하고, GCTS 기능 보완 및 유관 시스템과의 연계로 u-항만물류 정보관리체제를 확장
- 또한 항만 물류 RFID 적용모델에 대한 KS 표준화 지원 등 RFID기술의 국내 항만 물류
 분야 도입 및 확산을 지원함
 - 현재 컨테이너 보안 관련 ISO의 RFID 표준은 433Mhz 및 2.45Ghz 듀얼 표준으로 설정됨. 특히 e-seal이 이에 해당
 - 신규 국제표준에 대비한 컨테이너 RFID 태그 인식을 위해 1단계 사업에서 설치됐던 433Mhz 리더에 대해 2.45Ghz 인식을 지원하도록 업그레이드를 추진

3) RTLS/RFID기반 U-Port 구축 사업

- 국토해양부는 RFID 기반 항만효율화사업의 2단계 확장사업이 완료되는 2008년부터 한국발 외국향 컨테이너 화물에 대해 RFID 태그 부착 사업을 지속적으로 확대
 - 유럽, 미국, 중국 등 여러 나라와의 실증실험을 통해 RFID기반의 글로벌 화물 추적 시스템을 점검하고 지속적으로 확장
- RFID 기반의 글로벌 컨테이너 화물 추적 사업을 통해 SCM 차원에서 컨테이너 화물 의 이동경로 및 위치 정보를 확보하기 위한 파일럿 테스트를 지속적으로 수행
 - 수출입 물류의 시작점인 화주기업의 내륙 물류거점과 국외 항만에 도착한 컨테이너에 대한 추적을 위하여 국내외 내륙물류거점과 해외항만에 대한 RFID 인프라 확대 구축사업을 실행하였으며 향후 2012년까지 추가적인 확대 구축을 계획
- RFID 기반의 항만물류 가시성 모델 개발 및 확대
 - RFID를 활용하여 국내 기업의 수출화물을 국내 내륙 물류거점에서 국외 항만 및 내륙물류거점까지 추적하기 위한 RFID 인프라를 구축하고 각각의 거점에서 수집된 RFID 추적정보를 물류주체들에게 제공하기 위하여 기 운영 중인 GCTS(Global Container Tracking System)를 활용한 모델을 개발

- "글로벌 물류·무역 정보망 구축 사업": '09.07 ~ '09.12
 - · 함부르크,슬로베니아 및 중국 5개 '컨'터미널 거점에 화물추적 Infra 구축
- RFID 태그 발급 및 부착
 - 국내외 물류거점에 설치된 433Mhz RFID 리더를 통하여 컨테이너 추적을 위해서는 국내에서 출발하는 컨테이너에 추적 장치인 태그에 대상 컨테이너 번호를 기록하고 이를 컨테이너 부착해야함
 - 이를 위하여 사업 참여 기업에게 태그 발급을 위한 휴대용 리더와 태그를 공급하였으며, 관련 교육을 통하여 해당 기업에서 태그 발급 작업을 안정적으로 수행 할 수 있도록 지원
 - 공급된 태그는 그 활용 방법에 있어 컨테이너에 부착 후 탈착이 불가능한 일체형과 탈착이 가능한 회수용 태그를 공급하여 참여기업이 이를 선택하여 활용 활 수 있도 록 유도
 - 국내에서 출발하는 컨테이너에 태그를 부착 후 해외에서 해당 태그를 수집하여 올 수 있는 회수물류가 존재하거나 준비 할 수 있는 경우 회수형 태그를 활용하는 방안이 적극 검토 되었으며, 별도의 회수 물류가 존재하지 않을 경우에는 일체형 태그를 공급

<그림 1> RFID기반 항만물류가시성 모델 개념도

- 국토해양부는 2010년에도 국내 수출 기업들의 컨테이너 화물 가시성 확보 및 제공을 위하여 국내 내륙 5개 거점과 국외 항만 및 내륙 8개 거점에 대한 433Mhz RFID 인 프라 확대 구축 사업을 계획 중임
 - 2010년 수행예정인 사업은 다음과 같으며 해당 사업은 이후에도 계속되어 2012년까지 지속될 것으로 전망
 - "글로벌 물류·무역 정보망 구축 사업": '10.04 ~ '10.12(예정)
 - · 중국. 일본. 러시아. 미국 서부 '컨'터미널 거점에 화물 추적 Infra 구축

나. 물류거점 정보화 사업

- 물류거점 정보화 사업은 각각의 물류거점의 반출입 정보와 화물차량관련 정보를 하나 의 시스템을 통해 통합관리하며 이에 관련된 이해관계자들과 정보를 공유함으로써 물 류비 절감뿐 아니라 국가 물류경쟁력을 확보하기 위한 사업임
 - RFID 기반의 정보시스템 구축 및 활용
 - 물류거젂내, 물류거젂간 RFID 정보 공유
- RFID를 활용한 내륙물류가시성 확보
 - 기존 항만을 중심으로 한 컨테이너 운송트럭에 대한 출도착 정보이외에 내륙물류거점 및 고속도로 톨게이트 진출입 정보를 확보하기 위해 900Mhz RFID 기술을 적극 활용한 인프라를 구축
 - 또한, 항만,내륙물류거점, 고속도로 톨게이트에서 수집된 차량(태그)의 인식정보는 이를 필요로 하는 기관 및 민간기업에 제공되어 국가적 물류경쟁력 강화에 기여
- 설치 대상 RFID 인프라
 - 900Mhz RFID를 활용한 화물운송트럭 추적을 위하여 내륙물류거점 및 톨게이트에 관련 인프라가 설치됨
 - 자체전원을 가지고 리더에 반응하는 433Mhz 태그에 비하여 리더에서 발산되는 자기 장을 활용하여 반응하는 수동형 900Mhz 태그는 그 출력이 능동형 태그에 비해 상대 적으로 약하므로 각 설치거점에 고정형 리더기 설치시 많은 제약사항을 가지고 있음

- o RFID를 활용한 화물운송 차량 추적 서비스 제공
 - 900Mhz RFID를 활용한 화물운송트럭 추적을 위하여 국토해양부는 2008년 시행된 『RFID기반 물류거점정보시스템 구축 정보화전략계획(ISP) 수립』사업 결과에 따라 국내 주요 물류거점 및 고속도로 톨게이트에 대한 RFID 인프라 구축사업을 활발히 진행중에 있음
 - 2008년 1차년도 사업에서는 경인/양사ICD, 군포IFT, 부산진CY 외 고속도로 10개소에 대한 인프라 구축사업을 시행하였으며, 2009년도 2차 사업에서는 고속돌 톨게이트 12개소를 대상으로 확대사업을 진행

<그림 2> RFID기반의 내륙물류거점정보시스템 개념

- RFID를 활용한 물류거점 게이트 자동화
 - 수출입 화물 물류거점 중 보세구역으로 지정된 지역에서는 진출입하는 차량의 기록 및 통제를 위하여 별도의 관리 인력이나 바코드 기반의 출입통제 시스템을 갖추고 있으나 이러한 게이트 출입통제 시스템은 바코드의 훼손이나 인력의 실수에 의하여 그 업무의 정확성이 떨어질 우려가 있음
 - 보세구역으로 지정된 물류거점은 밀수와 같은 불법적인 행위의 예방을 위하여 진출 입하는 화물 및 차량에 대한 엄격한 관리가 요구되어지는 장소로 무엇보다 오류를 원천 봉쇄 할 수 있는 출입통제 및 관리 시스템이 필요
 - 이에 『RFID 기반 물류거점정보시스템 구축』사업에서는 900Mhz RFID를 활용하여 차량 및 컨테이너 추적이외에 물류거점의 게이트 운영 효율화를 위한 사업을 함께 진행

다. 항만출입 보안 시스템

- 항만은 화물 유통의 중요한 거점으로 수출입에 의존하는 우리나라의 특성을 고려할 경우 국내에서는 물류·무역에서 차지하는 역할이 그 어느 물류거점보다 크다고 말 할 수 있음
 - 9.11 테러 이후 주요 국가는 많은 선박과 차량, 트럭 등 다양한 운송수단과 인원이 출입하고 있는 항만시설에 대한 안전을 위하여 항만시설보안규칙(ISPS)를 제정·시행하고 있으며 항만을 운영 또는 이용하는 기관 및 업체는 이를 준수하여야 함
 - 국토해양부에서는 오는 2012년까지 약 200억 여원을 투입하여 전국 6대(부산, 인천, 광양, 울산, 군산, 포항) 무역항만을 중심으로 RFID를 활용하여 항만출입체계를 개선할 계획

○ RFID 기반의 항만출입보안 시스템

- 기존, 서류 및 바코드 형태의 출입증 발급, 확인을 통한 항만 출입제어는 발급 또는 확인 시 담당자와 항만이용자의 불편을 초래하고, 출입제어에 있어서도 정확성이 떨어져 RFID를 활용하여 차량 및 사람의 항만출입제어 시스템을 전국항만에 보급 확산하기 위한 모델을 개발
- 여수지방해양항만청 산하의 낙포/석유화학/중흥부두에 시범 설치된 RFID기반의 항만 출입보안 시스템은 차량 및 차량운전자 인식을 위한 900Mhz RFID 리더 및 태그, 도보로 항만을 출입하는 상시/임시 출입자를 위한 13.56Mhz RFID 리더 및 태그를 설치/공급
- 차량에 부착되는 RFID 출입증은 탈 부착이 가능하여 출입증에 기록된 차량정보와 실제 출입차량과의 정보가 운전자 과실에 의하여 일치하지 않을 경우를 검증하기 위해차 량 번호판 판독을 위한 OCR리더를 설치 운영

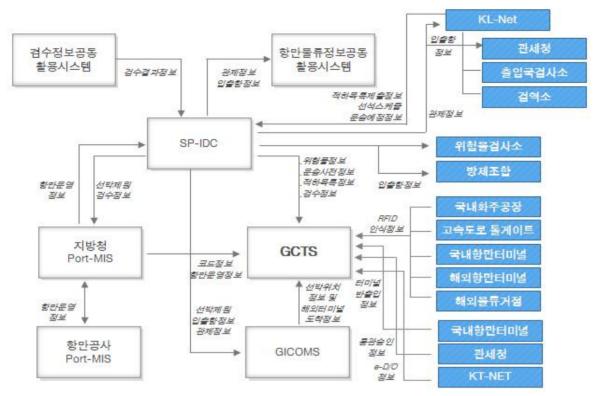
○ 향후 확대 구축 계획

- 2009년 『RFID기반의 항만출입체계 개선 (시범) 사업』에서 구축된 모델과 ISP 결과를 토대로 전국 주요항만의 현 차량및 인원 출입 현황 및 출입증 발급 현황, ISPS Code 적용 대상 여부를 고려하여 연차별로 확산할 계획

3. GCTS 기반의 정보흐름

○ 컨테이너 추적관리시스템(Global Container Tracking System)은 RFID 기반의 물류정보 네트워크를 구축하여 차량・컨테이너의 물류거점 반출입 정보를 실시간으로 수집하여, 컨테이너 또는 B/L 번호 등을 이용한 컨테이너 및 화물의 위치 추적을 조회하고 정보를 제공하는 물류정보시스템

○ GCTS 서비스 내역


- 수출입 화물과 관련된 다양한 정보를 GCTS에 연계 확보하여 RFID 기반의 컨테이너 단위 추적 정보외에, 해당 화물 및 운송선박들에 대한 인·허가 정보 및 위치 정보 를 제공함

<표 1> GCTS 연계시스템 및 연계 정보

연계 구간	연계정보
SP-IDC	- 위험물 정보, 운송사전정보, 적하목록제출정보 등
Port-MIS	- 항만운영 관련 코드 정보, 운영 정보 등
GICOMS	- AIS 기반의 선박 위치 정보 및 해외 터미널 도착정보
검수정보 공동활용	- 컨테이너 양적하 검수 결과 정보
항만물류 통합활용	- 국토부, 관세청, CIQ 기관의 인허가 정보
해외항만 및 화주공장	- RFID 기반의 컨테이너 추적 정보
국내 16개 '컨'터미널	- '컨'터미널 반출입 정보
관세청	- 수출입 인·허가 승인 정보('10년 구축 예정)
KT-NET	- e-D/O 정보('10년 구축 예정)

○ GCTS 프로세스

- GCTS의 정보흐름 프로세스는 컨테이너 및 화물추적을 통한 RFID 인식정보와 유관 기관 연계를 통해서 부가정보 제공 서비스로 구분
- RFID 인식 정보는 국내외 화주거점, 고속도로톨게이트, 항만터미널, 해외터미널 및 해외물류거점에서 인식된 실시간 RFID 인식정보를 수집하여 화물정보를 추적
- 유관기관 연계를 통한 부가정보 제공 서비스는 위험물 정보, 적하목록정보, 관제정보, 항만운영 정보, 통관정보등 '컨'화물의 물류 흐름에 대한 상세 추적 정보를 제공
- 또한 "글로벌 물류·무역 정보망 구축 사업"에서 국내 각 컨테이너 터미널에서 제공 된 터미널 CODECO 정보와 RFID 인식 정보를 활용하여 주/월/년 단위로 정확한 국 내 컨테이너 수출 물동량 통계 정보 제공 서비스가 가능

<그림 3> GCTS 정보 흐름 프로세스

4. RFID 정보의 국가교통DB 활용방안

가. GCTS 활용 가능 정보

- GCTS는 RFID 기반의 물류정보 네트워크를 구축하여 차량・컨테이너의 물류거점 반출・입 및 장치・하역 작업 결과를 실시간으로 자동 수집함으로써, 컨테이너/BL번호 등을 이용한 컨테이너 및 화물의 위치추적을 조회하고 정보를 제공하는 물류정보시스 템임
 - GCTS는 추적 데이터 자동 수집을 위한 RFID태그, 리더, 미들웨어, 컨트롤러, 운영서버 및 네트워크 등의 RFID 인프라와 태그의 부착, 등록, 리더 설치 및 운영을 위한 운영관리 시스템, 각 거점의 리더를 통해 실시간으로 수집된 정보를 활용한 컨테이너/차량/화물의 추적, 항만 시설의 운영현황, 물류 리드타임 제공을 위한 위치추적 시스템으로 구성
- 국가교통DB와 관련하여 GCTS에서 관리하는 정보를 살펴보면 위치추적 측면에서의 정보활용이 가능
 - 즉 차량, 컨테이너, 선박 및 화물의 위치 추적관리, 차량 및 컨테이너의 거점별 현황 파악이 장래에 가능하게 되므로 이들 정보를 활용하는 경우 컨테이너 운송차량과 컨테이너 자체에 대한 이동경로 파악이 가능
 - RFID 리더기를 비롯한 관련인프라의 확산이 관건이지만 국토해양부에서 지속적으로 관련 사업을 추진하고 있으므로 적어도 물류거점간 컨테이너 이동 정보는 확보가 될 수 있을 것으로 예상
 - 화주 단위의 인프라 설치까지는 많은 시간이 걸릴 것으로 예상되나 톨게이트에서는 관련 정보를 확보할 수 있을 것으로 판단되므로 톨게이트와 물류거점간 이동정보는 향후에 확보할 수 있을 것으로 판단됨

나. 정보 활용 실태

1) 게이트 출입관리

- 항만터미널 게이트 반입업무는 컨테이너가 게이트 도착 시, RFID 태그를 이용하여 차량 및 컨테이너 정보를 자동 인식, 확인함으로써 컨테이너 반입 인증 및 승인이 자 동으로 처리
 - RFID 기술을 활용한 게이트 출입관리는 차량 및 컨테이너에 각각 RFID 태그를 장착 하여 실제 차량 및 컨테이너를 확인
 - 게이트 출입 허가 여부를 신속하게 판단한 후, 터미널 내 컨테이너 장치 위치에 대한 정보를 PDA, 대형전광판 등의 표시 장치를 통하여 차량기사에게 직접 알려 주어 차량 및 컨테이너 무정차 게이트 운영 방식을 실현하여 출입 오류 제거, 항만 내 보안 등 게이트 생산성을 향상시키고, 게이트 주변 교통 정체상황 유발을 최소화시킬 수 있음
 - 게이트 반출입 시간대를 알 수 있기 때문에 작업중심시간 및 특정시점 통행특성 분석이 가능할 것으로 전망

2) RFID 운영 및 관리업무

- 태그 등록 관리업무는 차량에 부착되는 태그는 승인된 차량의 검증을 위하여 검증된 장소에서 기록하여야 하며, 컨테이너 태그는 ICD에서 컨테이너 반출 시, RFID 태그를 부착하고 컨테이너 번호를 기록하여 관리하여야 함
 - 이때, ICD 게이트 반출시, 철도CY 게이트 통과시, 항만터미널 게이트 반입 시, 장 치장에 장치 시, 선적 시의 시점정보(거점정보 + 일시)를 RFID 태그 정보와 함께 관련 시스템과 연계되어 등록정보 및 시점정보를 관리함
 - 물류거점정보화사업에서 ICD 및 철도CY의 RFID를 활용한 게이트운영시스템 구축
 - 기타 운영정보관리업무는 구축 시스템의 원활한 정보 관리를 위하여 기본적으로 필 요한 정보 관리를 위한 정보처리 서비스를 제공함

3) 화물 및 컨테이너 추적

- ICD부터 철송, 수출항, 수입항에서의 하역 및 게이트 반출 시점까지 컨테이너 및 차량의 이동 전 과정을 거점별 실시간으로 추적
 - 태그 기록 정보는 각 거점에 설치된 리더기를 통하여 물류추적정보시스템(GCTS)에 실시간으로 전송되어 해당 고객에게 트래킹 정보를 서비스로 제공
 - 화물 및 컨테이너 추적 측면은 화물 추적관리와 컨테이너 재고관리부분으로 구분
- 화주는 이송을 허락한 컨테이너가 최초 선정된 거점이 아닌 다른 거점에 장치되거나, 이동 도중일 경우 현재의 컨테이너 화물 관련 정보의 파악과 복합운송 사용 등 컨테이너 이송 노드간의 물류거점별 정보화 수준 및 연계화 수준에 차이가 있어 전체 물류 네트워크에 대한 화물정보 추적에 한계가 있는 실정임
- RFID 기술을 활용한 항만 내 화물 추적관리의 효율화는 각 물류거점의 게이트에 RFID 리더를 설치하여 각 거점별 화물 반출·입 상황을 실시간으로 정보 제공이 가능
 - 이를 통해 거점별 정보화 수준 격차를 해소하고, 거점별 전체 물류네트워크에 대한 화물 추적정보 서비스 수준을 향상시킬 수 있음
 - RFID 기술을 활용하여 운송모드에 상관없이 전체 물류운송 네트워크에 대한 화물추적정보를 정보의 단절 없이 제공받을 수 있음
- 수출입 일반화물은 전수 집계가 가능하고 항만별로 매년 변화하므로 이를 반영하여 수출입 일반화물 화물의 내륙 기종점을 업데이트하는 것이 가장 기본적인 현행화 방 법에 해당함
 - 항만에서의 일반화물 물동량은 PORT-MIS와 SP-IDC를 통해 전수가 발표되고 있음

5. 결론 및 정책제언

가. 결론

- 항만물류 분야에서 RFID의 활용은 컨테이너 위주로 진행됨. 이는 컨테이너가 기기단 위로 운송, 하역, 보관, 선적 되는 등 관리가 용이하고 단일화 되어 있어 적용이 다른 대상에 비해 상대적으로 용이하기 때문임
 - RFID 기반의 항만물류 효율화 사업 등을 통해 설치된 RFID 시스템은 기본적으로 컨테이너 터미널, ICD 및 고속도로 등 RFID 리더가 설치된 지점에서 컨테이너 태그정보를 인식하면서 운영
 - 인식된 정보는 해당물류주체가 게이트 반출입 등 각종업무에 활용하는 동시에 GCTS에 전송이 되고 있음
 - GCTS에 전송된 정보를 활용하여 물류거점간 컨테이너의 이동정보를 확인할 수 있음
- 항만터미널 게이트 반입 시, ICD 게이트 반출시, 철도CY 게이트 통과시, 장치장에 장치 시, 선적 시의 시점정보(거점정보 + 일시)를 RFID 태그 정보와 함께 관련 시스 템과 연계되어 등록정보 및 시점정보를 관리할 수 있음
 - 현재는 리더기가 설치된 지점에서의 시점정보를 중심으로 정보가 관리되고 있으나 향후에는 주요 권역간 이동 정보를 활용
 - 항만별, 터미널별 반출입 물량, 시점정보 등을 활용하여 컨테이너 물류패턴조사에 활용
 - 권역간(존) 이동 정보 연계를 통하여 컨테이너의 운영경로 및 운송시간 분석에 활용

나. 정책제언

- 실제로 RFID 정보를 컨테이너 화물의 기종점 자료의 보완 자료로 활용하기 위해서는 자료의 신뢰성에 대한 검증, 충분한 샘플의 확보, 지속적인 자료 제공 체제 및 제공 된 정보를 분석할 수 있는 분석체계의 마련이 중요
 - 아직 물류거점과 항만간 RFID 정보 연계가 원활하게 이루어지지 않고 있는 상태이기 때문에 권역간 이동정보를 활용하는데는 한계. 이는 아직 물류거점에 대한 RFID 인 프라가 충분히 설치되지 않았기 때문임. 아울러 관련주체들이 자발적으로 관련정보를 전송하는 체제가 아직 정착되지 않아 관련 정보를 충분히 확보하지 못하고 있음
 - 따라서 관련 시스템간의 연계가 무엇보다도 중요하며 관련 당사자들의 공감대 형성이 필요
- ㅇ 컨테이너 터미널의 반출입 정보를 우선적으로 활용
 - 특정시점에서의 통행특성 분석에 활용. 항만간, 터미널간 통행특성 비교
 - 물류거점별 반출입 정보도 관련 당사자의 협력을 통해 활용
- 물류거점별로 인식된 정보를 GCTS에서 취합하여 거점간 운송경로 분석 등에 활용하기 위한 후속연구를 수행할 필요
 - GCTS로 통보되는 정보를 우선적으로 활용하고, 관련 인프라의 확산에 따라 관련 정보가 지속적으로 확보되는데로 이를 활용
 - 개별 시스템의 상호 연계 및 분석시스템 개발에 주력할 필요
- 컨테이너의 이동경로 조사에 활용. 조사시점, 조사지역 및 대상컨테이너를 선별하여 이들 컨테이너의 이동경로를 추적
 - 이동경로 및 이동 시간 등에 대한 정보를 확보하고 이를 분석하여 통행 특성을 파악
 - 운송수단별 정보를 확보하는 경우 조사대상을 대상으로한 수송수단별 분담율 산정을 추진
- 컨테이너 내품정보 등 추가적인 정보가 관리되기 까지는 시간이 소요될 것으로 전망되며 내품정보가 확보되는 경우 보다 다양한 분석이 가능
 - 항만물류 분야에서의 RFID는 이제 도입 및 확산 단계에 있으므로 지속적으로 적용 및 활용방안을 모색할 필요
 - 해외 항만에도 관련 인프라를 설치하고 이를 활용할 수 있는 체제를 부분적으로 갖추고 있으므로 글로벌 SCM차원에서의 활용방안을 연구
 - 국가간 협력을 통해 글로벌 차원의 컨테이너 화물 추적 시스템 구축을 앞당기는데 기여

제1장 과업의 개요

제1절 과업의 배경 및 목적 제2절 RFID 개요

제1장 과업의 개요

제1절 과업의 배경 및 목적

1. 추진배경 및 현황

- 물류분야의 정보화는 지속적으로 발전하고 있는 IT기술의 발달과 물류흐름에 필수적 으로 수반되는 정보의 효율적인 처리에 대한 수요 증가로 계속해서 발전하여 왔음
 - RFID는 최근에 크게 각광받고 있는 기술인데 무선을 이용하여 정보를 주고받을 수 있기 때문에 여러 분야에서 널리 활용되고 있으며 물류분야에서도 빠르게 확산되고 있음1)
 - 국토해양부는 'RFID기반 항만물류 효율화 사업'과 'RTLS/RFID기반 u-Port 구축사업' 등과 같은 사업에서 첨단기술인 RFID를 활용하여 화물차량의 게이트 반출입 정보 및 터미널내에서의 컨테이너의 효율적인 처리 등에 활용하고 있음
- 물류분야에서 활용중인 정보기술은 화물의 움직임과 관련된 정보는 화물이 실린 차량의 이동을 파악하여 파악하는 방법과 화물자체의 이동을 파악하는 방식 등이 있음
 - GPS를 이용하는 경우 차량과 화물의 이동을 비교적 정확하게 파악할 수 있으나 장비구입문제, 운전자의 개인적인 정보 노출, 이동 관련 보고 주기 등의 문제로 인해 물류분야 전체에 널리 활용되지는 않고 있음
 - 화물자체의 이동을 확인하는 방법은 사람의 관측, 바코드, RFID 등 여러 방법이 사용되고 있으며 이중 바코드 방식이 현재 제일 널리 사용중에 있음
 - RFID는 바코드의 편리함과 무선 인식이라는 장점을 같이 갖고 있기 때문에 널리 확산될 것으로 기대되고 있으나 바코드에 비해 여전히 높은 태그 가격, 리더 및 태그에 사용되는 주파수의 표준화 필요, 어플리케이션의 부족 등이 확산을 막는 요인으로 지적되고 있음

¹⁾ 무선인식(Radio Frequency IDentification): 일정한 주파수대역을 이용해 무선 방식으로 각종 인식정보 데이터를 주고받을 수 있는 시스템. 본 보고서에서는 RFID라는 용어로 통일하여 사용하였음.

- 현재 국내에서 컨테이너 물류분야에 사용되고 있는 RFID는 컨테이너를 운반하는 차 량과 운전자 인식 및 컨테이너 기기 자체 인식분야에서 주로 적용
 - 컨테이너 터미널 및 ICD 등 물류거점에서는 반출입하는 컨테이너 정보를 사전에 전 송하고 이 정보를 활용 즉 컨테이너 화물이 게이트를 통과할 때 사전에 신고된 컨테이너 인지 아닌지를 확인하여 업무를 처리하고 있음
 - 게이트 통과시 과거에는 운전자가 바코드 방식을 이용하여 운전자정보와 차량정보를 확인하였는데 지금은 RFID 방식으로 변경하여 좀 더 신속한 업무처리가 가능한 구조로 변경됨
 - 컨테이너에 부착한 RFID를 인식하여 컨테이너의 이동을 확인하는 방법을 도입함
 - 국내항만과 외국의 항만까지를 연계하여 RFID 정보를 확인하는 사업이 국내외 항만에서 구축이 완료된 상황이며 현재 진행중이거나 계획중인 사업이 완료되면 더 많은 정보를 활용할 수 있을 것으로 기대됨

2. 사업의 필요성 및 목적

- RFID는 최근 전산업 분야에 걸쳐서 활용이 확대되고 있는 신기술이며, 특히 물류와 관련해서 SCM(공급사슬망) 전반에 걸쳐 급속히 확산되고 있는 첨단 기술임
 - 이러한 RFID 기술을 이용할 경우 화물의 위치정보, 화물추적, 화물의 상태정보 등다양한 정보를 실시간으로 획득할 수 있을 뿐만 아니라, 유통비용과 물류비용을획기적으로 절감할 수도 있음
 - 만약 RFID 기술을 이용한 컨테이너화물 추적 정보가 적절하게 생성만 된다면 국가 교통DB사업의 수출입컨테이너화물 O/D 조사와 보완갱신에 활용이 가능할 뿐만 아니라 O/D의 신뢰도 제고에도 크게 기여할 것으로 생각됨
- 현재 컨테이너 물류분야에서 사용되는 있는 RFID에는 아직 화물의 내품정보 등 민감한 정보는 수록되어 있지 않고 있으며 컨테이너 번호와 같은 기기 인식을 위한 정보가 수록되어 있기 때문에 활용 방안 역시 컨테이너의 위치추적과 위치정보 확인 등에 집중 되어야 함
 - 고속도로 톨게이트, 대형 화주 거점, 화물 터미널, ODCY, ICD, 철도 터미널 등 주요 물류거점에 리더기 설치 등 기본 인프라가 구비되기 전까지는 리더기가 설치된 물류 거점간의 컨테이너 이동 확인에 RFID 정보를 사용하는 방안을 마련

제2절 RFID 개요

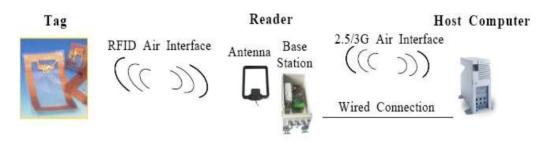
1. RFID 정의

- RFID는 무선 주파수를 이용해서 가까운 거리는 물론 수십 미터까지 떨어진 사물이나 사람에 부착된 태그를 인식해. 그 태그로부터 정보를 주고받을 수 있는 장비임
 - RFID의 도입에 따른 효과와 이점은 작업량 절감이나 인건비 절감 등의 비용 절감이라는 측면과 바코드 같은 다른 종류의 인식방식에 비해 비환경성, 비접촉성 등의 유리한 점임
 - 하지만, 넓은 의미로는 사물의 인터넷이라 할 수 있음. 인간의 세계에서 존재하는 유형 및 무형의 모든 사물을 인식하고 관리하여, 인터넷이라는 통신 수단을 통해 연결을 한다는 것임
 - 좁은 의미로 바코드와 같은 센싱 기술의 대체 그 이상의 의미를 지니고 있는 것임
- RFID의 진화 단계는 크게 5단계의 진화과정을 보이고 있음
 - 초기 단계(Standard Alone)는 태그를 저주파 채널을 통해 리더기가 인식해 컴퓨터로 시리얼을 통해 전송하는 방식
 - 여기에서 멀티 개념이 도입되면서 지역 네트워크를 통해 다수의 리더기로부터 컴퓨팅이 가능하게 되는 단계(Networked Private)로 진화
 - 분산처리 개념이 도입되면서 네트워크가 지역의 범주에서 벗어나 세계적으로 확장 되면서 자연스럽게 분산처리가 필요하게 되는 형태로 진화하며, 네트워크가 인터넷 의 단계로 진화
 - 인터넷 수준으로 연결됨과 동시에 태그 ID가 유니버설 코드로 확장이 되면서 EPC²⁾의 개념이 도입
 - 현재는 지극히 원시적인 구조에서 탈피해 진정한 유비쿼터스 환경으로 진화하고 있는 과정
- RFID의 종류는 안테나로부터 고주파 태그(RF Tag)로 전파를 송신해 다양한 변조 및 복조 단계와 물리적 특성을 고려한 자계를 이용한 전자결합방식, 평면안테나를 통한 마이크로방식, 전파를 활용하는 전자유도방식, 광방식 등이 있음

²⁾ EPC는 Electronic Product Code의 약자로 공급망에서 개별 상품을 식별하는 코드를 의미.

- 또 전원공급 여부, 주파수 대역, 통신접속 등의 분류기준에 따라 세밀한 분류가 가능 하고 분류에 따른 특징 및 장점을 보이고 있음
- 우선 전원공급여부에 따라 능동형 태그(Active Tag)와 수동형(Passive Tag)로 구분
 - 능동형은 내장 배터리를 사용하고 있고, 읽기/쓰기가 가능한 메모리를 크기별로 가지고 있으며 공급된 전원으로 운영되므로 수명이 최장 10년이라는 제한성이 있으나, 장거리(30~100m) 데이터 교환범위를 갖는다는 장점이 있음
 - 대형 창고와 같은 물류나 유통분야에 적합하며, 컨테이너 단위의 적용분야에 유리함
 - 수동형은 외부 전원의 공급이 없으므로, 구조가 비교적 간단하며, 저가이고, 반영구 적 수명을 가진 반면, 읽기전용 메모리고 높은 출력의 리더가 필요함
 - 따라서 소단위 적용에 사용되며, 중간 단계인 반수동형(Semi-Passive Tag)로도 구분이 가능하며, 상자나 팰릿 단위에 적용될 수 있는 태그로도 분류가 가능함
 - 대부분의 태그가 가지고 있는 장단점에 의해 해당 RFID 응용기기가 각각 추진되고 있는 실정임
- ㅇ 주파수 대역에 따라 고주파와 저주파로 구분함
 - 30~500KHz를 사용하는 저주파 태그는 짧은 가독 거리로 인해 보안, 자산관리, 정품 식별등에 사용
 - 860~960MHz나 2.45GHz의 고주파는 30m이상의 가독 거리로 철도, 물류, 유통 등 에서 고려되고 있음
- 현재 크게 5개의 주파수 대역이 있는데, 주파수의 성질에 따라 다양한 응용이 진행되고 있음
 - 125~135KHz (ISO 18000-2)는 축산물 유통이나 출입카드 등에서 활용
 - 13.56MHz (ISO 18000-3)은 우리가 흔히 접하는 신용카드나 교통카드, 혹은 작은 단위에서 활용
 - 433.92MHz(ISO18000-7)부터 능동형 태그가 적용될 수 있는데, 보통 컨테이너 등에 적용이 가능
 - 860~960MHz (ISO18000-6)은 현재 물류 유통에서 적극 도입을 검토 중인 주파수로서, GTAG 등 글로벌화로 검토, 진행 중인 대역이며, 현재 국내에서도 이 대역을 표준으로 진행 중임

- 2.45GHz(ISO 18000-4)는 일본의 뮤칩과 같은 전자문서나 여권 위조 방지 등에 적합한 주파수 대역 제품임
- 각 주파수 대역별로 그 장단점이 유리하게 적용될 수 있는 기기가 산업별로 활발히 검토되고 있음


<표 1-1> 주파수 대역별 RFID시스템 정의

ᄌᆔᄉ	저주파 고주파		극초단파		마이크로파
주파수	125.134KHz	13.56MHz	433.92MHz	860~960MHz	2.45GHz
 인식 거리	60Cm미만	60Cm까지	~50~100m	~3.5~10m	~1m 이내
일반 특성	비교적 고가환경에 의한 성능 저하 거의 없음	 저주파보다 저가 짧은 인식 거리 와 다중 태그인 식이 필요한 응용 분야에 적합 	• 실시간 추적 및 컨테이너 내부 습도, 충격 등	IC기술발달로 가장 저가로 생산가능 다중태그인식 거리와 성능이가 장뛰어남 대하다 하다 하	
	• 수동형	• 수동형	• 능동형	• 능동/수동형	• 능동/수동형
적용 분야	· 공정자동화· 출입통제/보안· 동물관리	수화물관리대여물품관리교통카드출입통제/보안	• 컨테이너 관리 • 실시간 위치 추적	• 공급망관리 • 자동통행료 징수	• 위조방지
 인식 속도		저속 ←		→ 고속	
환경 영향		강인 ←		→ 민감	
태그 크기		대형 ←		→ 소형	

자료: 한국전자통신연구원 홈페이지(www.etri.re.kr)

2. RFID 시스템 구성

- RFID의 시스템은 안테나가 포함된 리더기, 무선자원을 송/수신 할 수 있는 안테나, 정보를 저장하고 프로토콜로 데이터를 교환하는 태그. 서버 및 네트워크 등으로 구성
- 각 부분의 기능으로는 리더기는 RFID 태그에 읽기와 쓰기가 가능하도록 하는 장치이고, 안테나는 정의된 주파수와 프로토콜로 태그에 저장된 데이터를 교환하도록 구성되는 장치이며, 태그는 데이터를 저장하는 RFID의 핵심기능을 담당
- RFID에서 사용되는 기술은 자동인식(AIDC) 기술의 한 종류로 마이크로 칩을 내장한 태그, 카드, 라벨 등에 저장된 데이터를 무선주파수를 이용하여 비접촉으로 읽는 기 술로 태그 반도체 칩과 안테나, 리더(인식기)로 구성된 무선주파수 인식시스템
 - 반도체 칩에는 태그가 부착된 상품의 정보가 저장되어 있고, 안테나는 이러한 정보를 무선으로 수 미터에서 수십 미터까지 전송하며, 리더는 이 신호를 받아 상품정보를 해독한 후 컴퓨터로 보냄
 - 태그가 달린 모든 상품은 언제 어디서나 자동적으로 확인 또는 추적이 가능하며, 태그는 메모리를 내장하여 정보의 갱신 및 수정이 가능함
- RFID는 리더(Interrogator)를 통하여 무선 통신에 의해서 접촉하지 않고 태그(Trans- ponder) 의 정보를 판독하거나 기록하는 일종의 무선 통신시스템이며, 무선 IC 태그라고도 함

- 통합된 안테나를 갖춘 IC침
- 장비나 사물에 삽입됨 (e.g. handsets)
- Passive (read only) and active (read/write) য়ৢ
- 무선 주파수를 사용한 Reader에 의해 인식
- Tag의 정보를 수집/가공 또는 active tag의 경우 정보 갱신/저장
- 다양한 Tag또는 Reader에서 정보를 수집/정리/처리
- 수집/정리/처리된 정보를 네트워크 또는 중앙 정보처리 시스템에 전송
- 각 하위장치들을 통제

<그림 1-1> RFID시스템 구성 요소 그림

제2장 항만물류분야 RFID 도입 현황

제1절 RFID기반의 항만물류효율화 사업

제2절 물류거점 정보화 사업

제3절 추진예정 사업

제2장 항만물류분야 RFID 도입 현황

제1절 RFID기반의 항만물류효율화 사업

- 해운항만물류의 정보화를 주관하고 있는 국토해양부는 고부가가치 최첨단 해운·항만 물류 시스템 구현 및 u-Port 글로벌 네트워크 구축을 위해 다양한 정보시스템을 구현1)
 - One-Stop 항만민원처리서비스와 이용자들이 필요한 정보를 제공하기 위해 항만운영 정보시스템(PORT-MIS: Port Management Information System), 해운항만물류정보 센터(SP-IDC: Shipping & Port Internet Data Center), 수출입 민원정보 공동활용 시스템(Single Window) 등을 구축하여 운영함
 - 서류 없는 e-Port Business 서비스와 실시간 물류관리를 위해 컨테이너터미널운영정보 시스템(ATOMS: Advanced Terminal Operation & Management System), 글로벌컨 테이너추적정보시스템(GCTS: Global Container Tracking System) 등을 개발 및 운영 하고 있음
 - 선박의 위치 추적 및 해양사고 예방기능 강화 및 해양사고 최소화를 위한 위기관리시 스템인 해양안전종합정보시스템(GICOMS : General Information Center on Maritime Safety & Security)을 구축·운영하고 있음
- 이와 같이 국토해양부는 정보관리, 화물관리, 선박관리가 연동된 물류정보시스템을 구축하고 운영함으로써 해운항만물류서비스의 경쟁력을 강화함
- 국토해양부는 부산항을 최첨단의 유비쿼터스 항만으로 전환하기 위한 단계적으로 사 업을 시행 중임
 - 1단계 'RFID기반의 항만물류효율화사업'을 2006년 9월에 완료
 - 2단계 'RFID기반의 항만물류효율화사업'을 2007년 5월부터 인천, 광양항 등 전 항만을 대상으로 확산하기 위해 추진 중임
 - · 2006년도에 추진한 1단계 사업의 경우, 부산항만 내에 RFID를 도입/적용해 부산 항만 생산성을 약 30% 향상시킨 것으로 추정

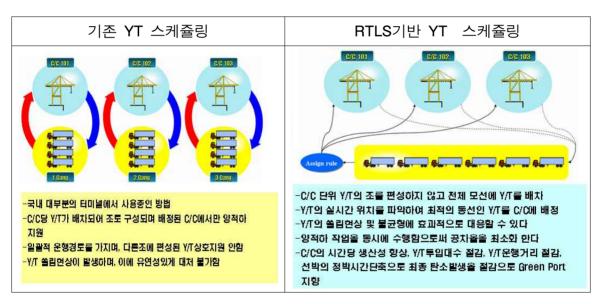
¹⁾ 국토해양부, 「내부 자료」, 2007. 5 및 RFID저널, 2007. 5. 15 발췌 정리

- 국토해양부에서는 2004년~2006년 총 55억 원의 예산을 투입하여 1단계 'RFID기반의 항만효율화사업' 추진
 - 인프라 구축을 위해 컨테이너 1만 개와 컨테이너 차량 2만대에 RFID 태그를 부착
 - RFID 리더 220여 대를 컨테이너 터미널 및 부산 주요간선도로 톨게이트 설치/완료
- 미국 롱비치 한진터미널 등 해외 주요 3대 항만에 RFID 리더를 설치함
- 'RFID기반의 항만효율화사업'을 통해 언제 어디서나 화물이동을 추적할 수 있게 돼 물 류흐름과 '컨'터미널의 생산성이 획기적으로 개선이 가능할 전망
- 현재 컨테이너에 화물을 적재한 후 납으로 봉인하던 것을 전자봉인(e-Seal)으로 대체할 수 있어, 미국이 입법・추진하고 있는 항만의 보안관리 강화측면에도 사전 대비가가능함
- u-PORT시스템 구축으로 높은 물류비의 감소와 항만생산성 증가로 인한 항만 매출액 증대²⁾ 효과를 가져 올 것으로 예상되며, 국내 RFID 적용기술의 활성화로 세계시장에 서 RFID 기술 표준화를 선점할 수 있는 기회가 될 것으로 전망됨

1. 1단계 'RFID기반의 항만물류효율화 사업'

- 1단계 'RFID기반의 항만물류효율화사업'에서는 부산항, 마산항, 울산항 전체 컨테이너 터미널과 미국 한진/현대 컨테이너터미널의 게이트에 900MHz 리더 89대, 433MHz 리더 79대 등의 RFID 인프라를 구축함
 - RFID 하드웨어 업체인 케이피씨의 900MHz 차량용 RFID태그 20,000개, 433MHz 컨테이너용 RFID태그 10,000개를 도입해 차량과 컨테이너에 부착해 운영 중임
- 1단계 사업에서는 소프트웨어 측면에서 GCTS와 터미널운영정보시스템(TOS: Terminal Operation System), SP-IDC, Port-MIS 등 RFID 인프라 간 지능형 u-Network를 구축
- 이러한 시스템 설치를 통해 RFID 기반 게이트 자동화를 구현, 컨테이너터미널 게이 트에 차량/컨테이너 자동인식을 위한 RFID 리더, 차량과 컨테이너에 각각 태그 부착
- TOS와 연계해 정보공유를 구현하였으며 운전자에게 SMS 서비스 및 LED전광판을 설 치해 정확한 장치장 위치정보 제공

²⁾ 연 840억 원의 항만 매출액 증대 효과 예상


- RFID기반 게이트 자동인식시스템을 구축해 터미널 반출·입 시간을 최소화하면서 정 보의 정확성을 향상시켰으며, RFID 시스템과 GCTS 연계를 통한 물류정보 연계
 - 즉, 차량/컨테이너 정보를 필요로 하는 유관기관시스템과 GCTS간 물류정보를 연계
 - 자산관리, 창고운영 효율화를 위해 화주/포워드/선사/운송사 등에 컨테이너 위치 추 적정보를 제공
 - 이 시스템과 컨테이너터미널의 TOS와 연계해 항만유영자동화. 컨테이너 보안서비스를 위한 기반 인프라를 제공
- 이와 함께 터미널 생산성 향상을 위해 컨테이너 터미널 한 곳을 대상으로 RTLS(Real Time Location System) 구축 및 겐트리크레인과 야드크레인에 RFID 장비를 설치해 타당성을 검토함
 - 1단계 사업에서의 '거점별 주체의 다양성', '예외 사항에 대한 신속한 대응의 어려움' 및 '관련 공공기관과의 원활한 업무 협조'가 문제점 및 애로사항으로 도출

자료: RFID저널, 2007. 5. 15

<그림 2-1> GCTS 항만효율화 개념도

- RTLS 기반 그린 u-Port 구축사업은 동북아를 중심으로 늘어나는 물동량과 주변 항만과의 경쟁에서 국내 항만이 우위를 확보하기 위해 추진. 국토해양부는 경쟁 항만과 차별화된 IT 기술인 RTLS와 RFID를 활용하여 국내 컨테이너 터미널 내 하역장비의 운영 효율성을 극대화를 도모
- RTLS기반의 장치장 자동화 시스템
 - 선박으로부터 컨테이너 양적하 작업을 수행하는 컨테이너 크레인(CC)과 양적하 대상 컨테이너를 이송하는 야드트렉터(YT)간의 스케쥴링을 통하여 작업생산성을 증대하고 YT의 이동거리를 최소화 하여 탄소배출량을 절감하고자 최신의 위치기반 기술인 RTLS을 적용

<그림 2-2> 컨테이너 터미널 양적하 작업 비교

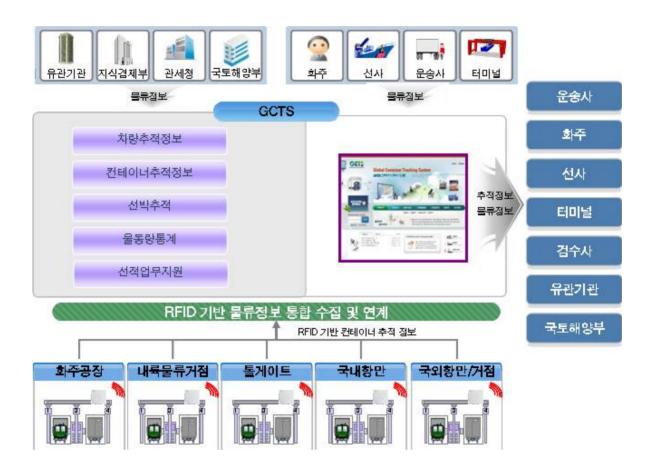
- 기존 각각의 컨테이너 크레인별로 컨테이너 이송을 위한 별도 YT들이 스케쥴링 되어 작업이 이루어지다 보니 각각 크레인과 YT들의 생산성의 차이가 발생
- 이에 대한 해결방법은 각 YT들의 실시간 위치정보를 활용하여 작업 중인 컨테이너 크레인에 가장 가까운 YT를 배정 함으로 최적의 터미널 작업 생산성을 유지
- 본 시스템은 가장 중요한 YT의 실시간 위치정보 획득을 위하여 도입 된 RTLS태그는 RTLS리더와의 거리로부터 획득한 현재 위치와 GPS 로부터 획득한 현재 위치를 병행 사용하여 시스템의 신뢰도를 향상

<그림 2-3> RTLS 기반의 YT 풀링 시스템 개념도

2. 2단계 'RFID기반의 항만물류효율화 사업'

- 국토해양부는 1단계 'RFID기반의 항만물류효율화사업' 수행을 통해 부산지역 컨테이너 터미널 RFID 인프라 및 GCTS를 구축하여, 터미널 생산성 향상 및 물류정보 통합 하는 효과가 나타남
- o 2차 사업은 이러한 1단계 사업성과를 기반으로 국내 전 항만으로의 u-물류 네트워크 인프라를 확장
 - 인천, 평택, 군산, 광양항의 컨테이너 전용터미널 게이트 자동화를 위한 RFID 인프 라를 확산 구축하고, GCTS 기능 보완 및 유관 시스템과의 연계로 u-항만물류 정보 관리체제를 확장
- 또한 항만 물류 RFID 적용모델에 대한 KS 표준화 지원 등 RFID기술의 국내 항만 물 류 분야 도입 및 확산을 지원함
 - 현재 컨테이너 보안 관련 ISO의 RFID 표준은 433Mhz 및 2.45Ghz 듀얼 표준으로 설 정 됨. 특히 e-seal이 이에 해당
 - 신규 국제표준에 대비한 컨테이너 RFID 태그 인식을 위해 1단계 사업에서 설치됐던 433Mhz 리더에 대해 2.45Ghz 인식을 지원하도록 업그레이드를 추진

3. 'RTLS/RFID기반 U-Port구축사업'


- 국토해양부는 RFID 기반 항만효율화사업의 2단계 확장사업이 완료되는 2008년부터 한국발 외국향 컨테이너 화물에 대해 RFID 태그 부착 사업을 지속적으로 확대
- 유럽, 미국, 중국 등 여러 나라와의 실증실험을 통해 RFID기반의 글로벌 화물 추적 시스템을 점검하고 지속적으로 확장

<그림 2-4> 5RFID 관련 주요 사업 추진 내역

- 2007년 5월부터 컨테이너터미널 게이트 차량의 무정차 반출・입처리와 운송 전 과정을 실시간으로 추적관리하기 위해 컨테이너 운반 차량에 태그를 부착하지 않으면 컨테이너 터미널 출입을 통제
 - 사업 기간동안 900MHz 대역의 태그 1만 개를 이미 차량에 부착했고, 2만 개를 추가 구입하여 국내 등록된 3만 5,000대 차량을 지원함
- RFID 기반의 글로벌 컨테이너 화물 추적 사업을 통해 SCM 차원에서 컨테이너 화물의 이동경로 및 위치 정보를 확보하기 위한 파일럿 테스트를 지속적으로 수행
 - 수출입 물류의 시작점인 화주기업의 내륙 물류거점과 국외 항만에 도착한 컨테이너에 대한 추적을 위하여 국내외 내륙물류거점과 해외항만에 대한 RFID 인프라 확대 구축 사업을 실행하였으며 향후 2012년까지 추가적인 확대 구축을 계획

- RFID 기반의 항만물류 가시성 모델 개발 및 확대
 - RFID를 활용하여 국내 기업의 수출화물을 국내 내륙 물류거점에서 국외 항만 및 내륙 물류거점까지 추적하기 위한 RFID 인프라를 구축하고 각각의 거점에서 수집된 RFID 추적정보를 물류주체들에게 제공하기 위하여 기 운영 중인 GCTS(Global Container Tracking System)를 활용한 모델을 개발

<그림 2-5> 6RFID기반 항만물류가시성 모델 개념도

- 설치 대상 RFID 인프라
 - RFID 기반 수출입 컨테이너 추적을 위하여 국토해양부에서는 본 사업에 참여한 국내 수출기업에 RFID 인프라를 공급하였으며, 국외 항만과 내륙 설치를 위하여 해외 관계 기관과의 MOU 및 관련 협의를 통하여 현지에 RFID 인프라를 설치
 - '08년 『글로벌 통합 물류·무역 정보망 구축 사업』과 09년 『글로벌 물류·무역 정보망 구축 사업』에서 공급된 RFID 인프라 현황은 다음과 같음

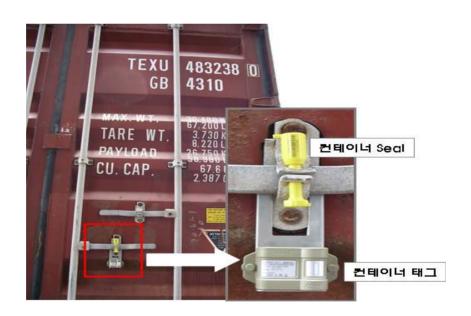
<표 2-1> 컨테이너 추적용 RFID 인프라

항목	용도	사진	비고
미들웨어 서버	RFID미들웨어 설치 및 GCTS와 정보 연계		
433Mhz 고정형 리더	국내외 물류거점에서의 컨테이너 부착된 RFID태그 인식		
433Mhz 휴대형 리더	컨테이너에 부착될 RFID태그에 컨테이너 정보 기록를 위한 장비		
433Mhz 태그	컨테이너정보를 저장하고 컨테이너 부착될 장비		
VPN	미들웨어 서버와 GCTS 와 정보 연계 시 가설사설망 구축		
RFID 미들웨어	인식된 컨테이너 태그정보의 정제		

- 각 RFID 인프라 중 고정형 리더는 국내외 항만 또는 물류거점에서 반입 반출되는 컨테이너 인식을 위하여 거점 게이트에 설치되었으며, 태그 인식율 향상을 위하여 리더 안테나의 방향을 조정하거나 출력을 조정하는 튜닝을 실시
- 리더 설치 시 게이트 관리 초소와 같은 리더 안테나를 부착 가능한 건물 또는 시설이 존재 할 경우 이를 활용하였으며, 별도의 사용 가능한 시설이 존재 하지 않을 경우, 별도로 제작 된 철제 기둥을 활용하여 인프라를 설치하였으며, 만약 불가피하게 옥외에 리더를 설치해야 할 경우 별도 제작된 함체에 리더를 설치하여 비나 눈 또는 외부 충격으로부터 리더를 보호 할 수 있도록 설치

<그림 2-6> 7433Mhz 고정형 리더 설치 사진

- RFID 태그 발급 및 부착
 - 국내외 물류거점에 설치된 433Mhz RFID 리더를 통하여 컨테이너 추적을 위해서는 국내에서 출발하는 컨테이너에 추적 장치인 태그에 대상 컨테이너 번호를 기록하고 이를 컨테이너 부착해야함
 - 이를 위하여 사업 참여 기업에게 태그 발급을 위한 휴대용 리더와 태그를 공급하였으며, 관련 교육을 통하여 해당 기업에서 태그 발급 작업을 안정적으로 수행 할 수 있도록 지원
 - 공급된 태그는 그 활용 방법에 있어 컨테이너에 부착 후 탈착이 불가능한 일체형과 탈착이 가능한 회수용 태그를 공급하여 참여기업이 이를 선택하여 활용 활 수 있도 록 유도
 - 국내에서 출발하는 컨테이너에 태그를 부착 후 해외에서 해당 태그를 수집하여 올수 있는 회수물류가 존재하거나 준비 할 수 있는 경우 회수형 태그를 활용하는 방안이 적극 검토 되었으며, 별도의 회수 물류가 존재하지 않을 경우에는 일체형 태그를 공급


<표 2-2> 컨테이너 부착 방법에 따른 태그 종류

구분	설명	사진
일체형	○컨테이너 한번 부착 후 탈착이 불가능하며, 전원이 전부 소모될 때까지 해당 컨테이너만을 추적 ○장점 컨테이너 태그 부착 방법이 단순 (태그 뒷면의 접착 스티커를 활용하여 부착) ○단점 수출 컨테이너 물량이 많을 경우 한정 공급된 태 그로는 수요를 충당 할 수 없어 별도 태그 구매 비용 발생	CO AN INT - 93/11/32. For the control of the contr
회수형	○컨테이너 부착된 후 탈착이 가능하여 탈착 후 다른 컨테이너 번호를 재 기록하여 기록된 컨테이너 추적 ○장점 태그의 회수 및 재사용이 가능함으로 한정된 수 량으로 수출 컨테이너의 추적이 가능하여 태그 구매 비용 절감 ○단점 일체형에 비하여 태그 부착 방법과 회수에 따른 절차가 번거로우며, 기업내 해외로부터 포장재, 운송재에 대한 회수 물류가 존재하지 않을 경우 별도 절차 마련이 필요 함	TAX INTO - BOATES. TO AND MAN AND AND AND AND AND AND AND AND AND A

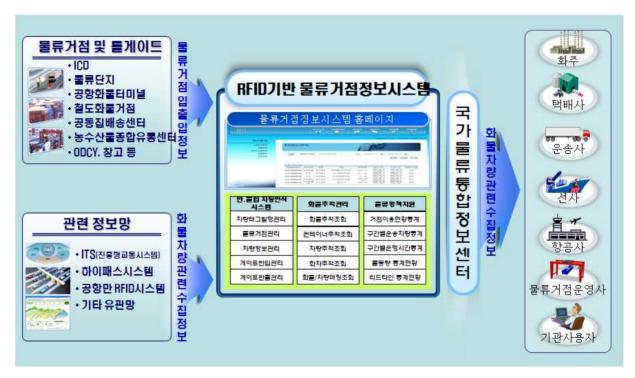
- 위 태그 종류에 따른 부착 방법은 일체형 컨테이너의 경우는 우측 상단 표면 중 오 목하게 들어간 부분에 접착 스티커를 활용하여 부착하며, 회수형 태그는 컨테이너에 화물 적입 후 잠금장치 체결 전 철제 고리에 회수형 태그를 거치하는 방식으로 부착 가능

<그림 2-7> 10일체형 태그 부착 방법

<그림 2-8> 회수형 태그 부착 방법

- ㅇ 국내외 설치 거점 현황 및 확산 계획
 - 2010년 3월 현재 정부에서 수출입 컨테이너 추적을 위하여 설치한 433 Mhz RFID 인프라는 8개 항만의 국내 컨테이너 전용터미널들과 국내 기업의 내륙 화물기지와 국외 항만 및 내륙에 설치되어 컨테이너 추적정보를 생산하고 있으며 이를 GCTS의 홈페이를 통하여 제공함을 물론 해당 수출기업에 정보를 제공

<그림 2-9> 국내 433Mhz RFID 인프라 설치 현황



<그림 2-10> 해외 433Mhz RFID 인프라 설치 현황

- 국토해양부는 2010년에도 국내 수출 기업들의 컨테이너 화물 가시성 확보 및 제공을 위하여 국내 내륙 5개 거점과 국외 항만 및 내륙 8개 거점에 대한 433Mhz RFID 인 프라 확대 구축 사업을 계획 중임

제2절 물류거점 정보화 사업

- 물류거점 정보화 사업은 각각의 물류거점의 반출입 정보와 화물차량관련 정보를 하나 의 시스템을 통해 통합관리하며 이에 관련된 이해관계자들과 정보를 공유함으로써 물 류비 절감뿐 아니라 국가 물류경쟁력을 확보하기 위한 사업임
 - RFID 기반의 정보시스템 구축 및 활용
 - 물류거점내, 물류거점간 RFID 정보 공유

<그림 2-11> 물류거점정보화 사업14

- 국내 물류시장의 규모가 확대되고 기업의 물류비 비중이 높아지면서 다양한 정보기 술을 활용하여 관련 비용을 절감하여 물류경쟁력을 높이고자 하는 국가 및 민간의 욕구가 증대
- 이에 유비쿼터스 기술인 RFID를 활용하여 내륙물류거점간 물류의 흐름을 파악하여 정부 및 민간에 물류 가시성을 확보 제공하기 위한 정보화 사업을 중장기 계획에 맞 추어 실행

- RFID를 활용한 내륙물류가시성 확보
 - 기존 항만을 중심으로 한 컨테이너 운송트럭에 대한 출도착 정보이외에 내륙물류거점 및 고속도로 톨게이트 진출입 정보를 확보하기 위해 900Mhz RFID 기술을 적극 활용한 인프라를 구축
 - 또한, 항만,내륙물류거점, 고속도로 톨게이트에서 수집된 차량(태그)의 인식정보는 이를 필요로 하는 기관 및 민간기업에 제공되어 국가적 물류경쟁력 강화에 기여

<그림 2-12> RFID기반의 내륙물류거점정보시스템 개념도

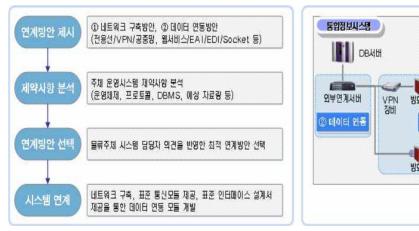
- 설치 대상 RFID 인프라
 - 900Mhz RFID를 활용한 화물운송트럭 추적을 위하여 내륙물류거점 및 톨게이트에 관련 인프라가 설치됨
 - 자체전원을 가지고 리더에 반응하는 433 Mhz 태그에 비하여 리더에서 발산되는 자기장을 활용하여 반응하는 수동형 900 Mhz 태그는 그 출력이 능동형 태그에 비해 상대적으로 약하므로 각 설치거점에 고정형 리더기 설치시 많은 제약사항을 가지고 있음

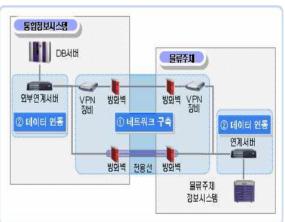
- 첫째, 리더와 태그간의 반응거리가 짧아 차량에 부착된 태그와 최적의 거리를 유지하여야 함. 다행히 주요 물류거점과 고속도로 톨게이트는 화물차량의 운행을 유도할 수 있는 진출입 차로가 존재하여 이를 적극 활용하여 설치하였으며, 리더기 안테나의 위치 또한 일반적인 차량들의 태그 부착위치를 고려하여 다수의 안테나를 설치
- 둘째, 차량 태그의 인식율 향상을 위하여 태그와 리더간의 거리와 더불어 태그 부착 차량의 운행속도 또한 인식율의 주요 변수가 되어 게이트 및 톨게이트 진입차량에 대 한 적정속도가 유지가 관건이 됨. 이에 각 물류거점에는 게이트 진입전 과속방지턱을 활용하여 차량의 게이트 통과속도를 조절하였으며, 톨게이트의 경우에는 요금소 정산 이전 또는 이후에 리더기를 설치하여 자연스럽게 차량의 운행속도를 조절하도록 유도

○ RFID를 활용한 화물운송 차량 추적 서비스 제공

- 900 Mhz RFID를 활용한 화물운송트럭 추적을 위하여 국토해양부는 2008년 시행된 『RFID기반 물류거점정보시스템 구축 정보화전략계획(ISP) 수립』사업 결과에 따라 국내 주요 물류거점 및 고속도로 톨게이트에 대한 RFID 인프라 구축사업을 활발히 진행중에 있음
- 2008년 1차년도 사업에서는 경인/양사ICD, 군포IFT, 부산진CY 외 고속도로 10개소에 대한 인프라 구축사업을 시행하였으며, 2009년도 2차 사업에서는 고속돌 톨게이트 12개소를 대상으로 확대사업을 진행

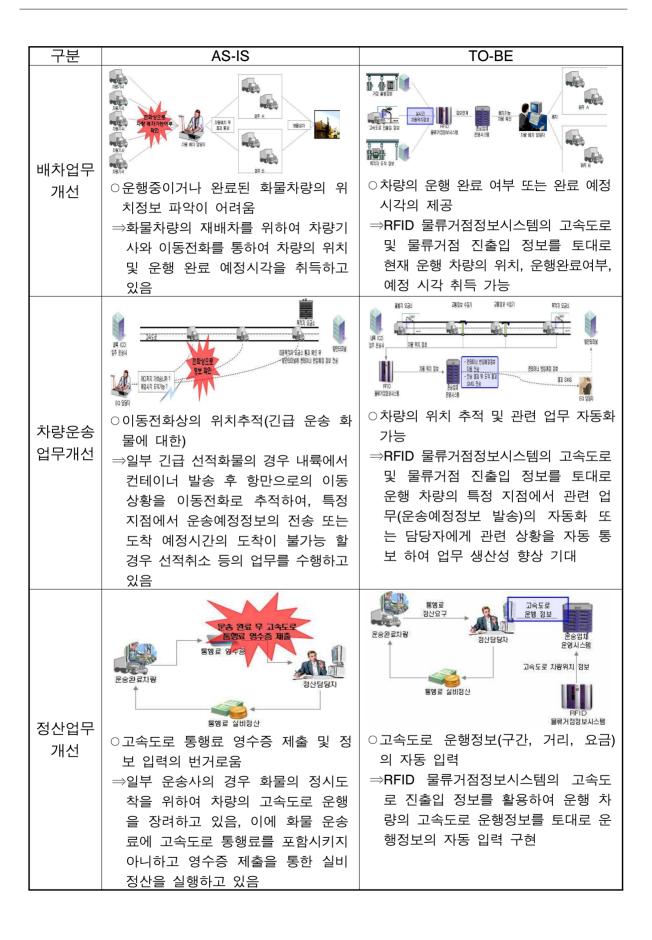
<표 2-3> RFID기반 물류거점정보시스템 구축 1단계 설치 톨게이트


		고속도로 진입방향			고속도로 진출방향				
물류거점	톨게이트	전체	하이	차단막	통행가능	전체	하이	차단막	통행가능
		차로	패스	(폐쇠)	차로수	차로	패스	(폐쇠)	차로수
의왕ICD	부곡	4	1	-	3(2)	6	1	(2)	3(2)
	양산	3	1	_	2(2)	6	1	_	5(1)
	대동	5	2	_	3(2)	13	4	_	9(2)
부산항만	가락	4	2	-	2(2)	6	2	-	4(2)
구선왕인	부산	7	2	(3)	2(2)	14	2		12(2)
	서부산	10	3		7(2)	10	3	(1)	6(2)
	북부산	5	3	-	2(2)	11	2	_	9(2)
	동광양	4	1	(1)	2(1)	8	1	(4)	4(1)
광양항만	옥곡	3	1	1	1(1)	5	1	(2)	2(1)
	광양	5	1	1(1)	2(1)	9	1	(5)	3(1)


[※] 차단막의 ()는 차로 폐쇄상태 레인 수, 통행가능()는 1단계 구축 레인 수

<∓ 2-4>	RFID기반	물류거점정보시스템	구축 2다계	석치 대상 톡게이트	Ξ
\TT \Z-T \	111110/11		1 4 6 7 7 1		=

-				로 진입방	 향		고속도	로 진출방	
물류거점	톨게이트	전체	하이	차단막	통행가능	전체	하이	차단막	통행가능
		차로	패스	(폐쇠)	차로수	차로	패스	사단틱 	차로수
서울(수도권,	서울	12	4	2(1)	5	4	4	_	16
	동서울	11	3	4	4	22	3	(1)	18
공항포함)	서서울	12	3	5	4	22	3	(1)	18
	남인천	12	2	6(2)	2	12	2	6(2)	2
	인천	12	3	6	3	12	3	6	3
	군자	9	2	2	5	19	2	1(1)	15
컨테이너항	서평택	4	1	1	2	8	1		7
	군산	5	1	1(2)	1	4	1	_	3
진입 T/G	동군산	3	1	1	1	5	1	_	4
	서울산	6	1	(3)	2	9	1	(3)	4
	마산	4	1	1	2	7	1	_	6
	내서	3	1		2	4	1	(1)	2


- ※ 차단막의 ()는 차로 폐쇄상태 레인 수
 - RFID가 설치된 물류거점 및 고속도로 톨게이트에서 수집된 화물차량 통과정보는 국 토해양부 ULTS에 취합되어 ULTS에서 홈페이지에서 제공되어지거나 운송사와 같은 물류주체들에게 정보가 전달되어 활용되고 있음



<그림 2-13> 물류주체와 ULTS와의 정보 연계

- 위와 같이 각 물류주체들은 전달 된 화물 운송 차량 추적정보를 활용하여 다음과 같은 업무환경 개선 효과를 달성

- RFID를 활용한 물류거점 게이트 자동화
 - 수출입 화물 물류거점 중 보세구역으로 지정된 지역에서는 진출입하는 차량의 기록 및 통제를 위하여 별도의 관리 인력이나 바코드 기반의 출입통제 시스템을 갖추고 있으나 이러한 게이트 출입통제 시스템은 바코드의 훼손이나 인력의 실수에 의하여 그 업무의 정확성이 떨어질 우려가 있음
 - 보세구역으로 지정된 물류거점은 밀수와 같은 불법적인 행위의 예방을 위하여 진출 입하는 화물 및 차량에 대한 엄격한 관리가 요구되어지는 장소로 무엇보다 오류를 원천 봉쇄 할 수 있는 출입통제 및 관리 시스템이 필요
 - 이에 『RFID 기반 물류거점정보시스템 구축』사업에서는 900 Mhz RFID를 활용하여 차량 및 컨테이너 추적이외에 물류거점의 게이트 운영 효율화를 위한 사업을 함께 진행
 - RFID를 활용한 게이트 자동화를 위한 주요 설비는 다음과 같다
 - · 차량 인식용 900Mhz RFID 리더
 - · 차량 인식 알림용 경광등 설치
 - · RFID 미들웨어를 통한 데이터 필터링 및 취합
 - · 네트워크 보안을 위한 VPN 설치
 - · 거점별 RFID 미들웨어 및 통합 센터간 정보 네트워킹

<그림 2-14> RFID를 활용한 게이트 자동화 구성도

제3절 추진예정 사업

○ 국토해양부와 항만공사 등 항만운영관련 유관기관에서는 RFID를 활용하여 크게 항만 출입 보안, 터미널 운영환경 개선, 컨테이너 추적을 위한 정보화 사업을 추진하고자 계획중

1. 항만 출입 보안 시스템

- 항만은 화물 유통의 중요한 거점으로 수출입에 의존하는 우리나라의 특성을 고려할 경우 국내에서는 물류·무역에서 차지하는 역할이 그 어느 물류거점보다 크다고 말 할 수 있음
 - 9.11 테러 이후 주요 국가는 많은 선박과 차량, 트럭 등 다양한 운송수단과 인원이 출입하고 있는 항만시설에 대한 안전을 위하여 항만시설보안규칙(ISPS)를 제정·시행하고 있으며 항만을 운영 또는 이용하는 기관 및 업체는 이를 준수하여야 함
 - 국토해양부에서는 오는 2012년까지 약 200억 여원을 투입하여 전국 6대(부산, 인천, 광양, 울산, 군산, 포항) 무역항만을 중심으로 RFID를 활용하여 항만출입체계를 개선할 계획

○ 기존 항만출입제어 현황

- 현재 국내 대부분의 항만은 각각의 항만 및 부두 운영 주체들이 관할 시설에 대하여 종이형태의 출입카드를 발급하고 발급된 출입카드를 소지한 차량 및 인력에 대해서만 항만 게이트 근무자가 그 출입을 제어하는 형태임
- 항만에 출입하고자 하는 차량이나 사람은 해당 항만을 관리하는 지방해양항만청 또는 항만공사에 관련 서류와 함께 신청서를 제출하고 출입증을 발급 받은 후 출입증을 소지한 차량 및 사람에 대해서 게이트 근무자의 육안 또는 바코드 정보에 의한 확인 후 항만을 출입

○ RFID 기반의 항만출입보안 시스템

- 기존, 서류 및 바코드 형태의 출입증 발급, 확인을 통한 항만 출입제어는 발급 또는 확인 시 담당자와 항만이용자의 불편을 초래하고, 출입제어에 있어서도 정확성이 떨어져 RFID를 활용하여 차량 및 사람의 항만출입제어 시스템을 전국항만에 보급 확산하기 위한 모델을 개발

- 여수지방해양항만청 산하의 낙포/석유화학/중흥부두에 시범 설치된 RFID기반의 항만 출입보안 시스템은 차량 및 차량운전자 인식을 위한 900Mhz RFID 리더 및 태그, 도보로 항만을 출입하는 상시/임시 출입자를 위한 13.56 Mhz RFID 리더 및 태그를 설치/공급
- 차량에 부착되는 RFID 출입증은 탈 부착이 가능하여 출입증에 기록된 차량정보와 실제 출입차량과의 정보가 운전자 과실에 의하여 일치하지 않을 경우를 검증하기 위해차 량 번호판 판독을 위한 OCR리더를 설치 운영

○ 향후 확대 구축 계획

- 2009년 『RFID기반의 항만출입체계 개선 (시범) 사업』에서 구축된 모델과 ISP 결과를 토대로 전국 주요항만의 현 차량및 인원 출입 현황 및 출입증 발급 현황, ISPS Code 적용 대상 여부를 고려한 연차별 확산계획은 다음과 같음

<표 2-5> 국내 주요항만 ISPS Code 대상 및 출입현황

	출입	일증 보급	현황	통형	뱅량	국가보안	ISPS코드	접안						
구분	인원	차량	재발급수	인원	차량		대상항만	- 접한 - 능력	주요취급화물					
 군산지방해양							군산항	1,160,000	벌크					
항만청	1,980	2,495	448	70,224	57,964	군산항	장항항	36,000	벌크					
대산지방해양	0.400	2.500	700	16,000	0.207	메시컨	대산항	1,133,600	유류,석유화학,벌크					
항만청	3,483	3,580	706	16,030	9,397	대산항	태안항	306,000	벌크					
							보령항	274,000	벌크					
							동해항	526,000	벌크,컨테이너					
도레지바레야				101,943	101,943	101,943	101,943	101,943	101,943		동해항	묵호항	41,800	벌크
동해지방해양 항만청	2,838	2,002	484							101,943	101,943 77,976	তপাপ	속초항	38,000
828							옥계항	95,000	벌크					
							삼척항	26,500	유류,벌크					
							마산항	360,000	유류,컨테이너,자동 차,벌크					
							진해항	85,000	유류,벌크					
마산지방해양	926	779	171	58,323	0.999 17.701	마산항	삼천포항	497,350	유류,벌크					
항만청	920	119	171	J0,323	17,701	마관광	통영항	11,000	벌크					
							장승포항		벌크					
							고현항	22,000	벌크					
							옥포항	20,000	벌크					

<표 2-5> 국내 주요항만 ISPS Code 대상 및 출입현황(계속)

	출입	입증 보급	현황	통행	량	국가보안	ISPS코드	접안	조 이 친 그 된 모
구분	인원	차량	재발급수	인원	차량	목표시설	대상항만	능력	주요취급화물
 여수지방해양							여수항	33,000	벌크
항만청	3,551	3,325	688	84,008	54,147	여수항	광양항	3,446,950	유류, 컨테이너, 벌크
목포지방해양				44.004	22.004	1 1 2	목포항	378,500	유류, 벌크
항만청				44,684	26,091	목포항	완도항	34,000	벌크
제주해양관리	01.0	000	20	41 571	40.500	-117-21	제주항	81,600	유류, 벌크
단	316	300	62	41,571	40,763	제주항	서귀포항	16,500	유류, 벌크
평택지방해양	4,657	2,322	698	59,149	40,112	평택당진항	평택당진항	703,300	유류, 컨테이너,
항만청	4,007	2,322	090	39,149	40,112	পদিক্ত	তিপত শৈত	703,300	자동차, 벌크
포항지방해양	2,112	4,732	684	324,982	226,378	포항항	포항항	1,180,000	벌크
항만청	2,112	4,732	004	324,302	220,510	上 %	エック	1,100,000	2-4
부산항만공사									 유류, 컨테이너,
부산지방해양	103,537	11,269	11,481	2,109,913	822,092	부산항	부산항	2,042,700	발크 발크
항만청									필그
울산항만공사									유류, 컨테이너,
울산지방해양	2,411	2,655	507	314,351	256,027	울산항	울산항	3,434,000	
항만청									자동차, 벌크
인천항만공사									유류, 컨테이너,
인천지방해양	23,962	1,050	2,501	407,454	366,360	인천항	인천항	2,282,500	ㅠㅠ, 신데이디, 자동차, 벌크
항만청									^/·ᆼ^/, 월크

출처: 국토해양부, RFID기반의 항만출입체계개선 시범사업 ISP 보고서. 2009.

<그림 2-15> 항만출입보안체계 확대 구축 계획

제3장 RFID 정보 흐름 분석

제1절 RFID Tag 기술 개요

제2절 RFID 정보흐름 프로세스

제3장 RFID 정보 흐름 분석

제1절 RFID Tag 기술 개요

- 전자태그(RFID)는 Radio Frequency Identification의 약자로 자동인식(AIDC) 기술의 한 종류로 Micro-chip을 내장한 Tag, Label, Card 등에 저장된 데이터를 무선주파수를 이용하여 비접촉으로 읽는 기술
 - 태그 반도체 칩과 안테나는 이러한 정보를 무선으로 수미터에서 수십미터까지 보내며 Reader는 이 신호를 받아 상품 정보를 해독한 후 컴퓨터로 전송
 - 그러므로 태그가 달린 모든 상품은 언제 어디서나 자동적으로 확인 또는 추적이 가능하며 태그는 메모리를 내장하여 정보의 갱신 및 수정을 수행
 - 전자태그(RFID) Tag는 정보축적과 발신기능을 가지는 매우 작은 칩으로 해당 상품의 세부 정보를 담고 있으며, 고주파(RF) 신호를 받으면 내장된 정보를 전송하는 방식으로 운영
 - 태그는 여러 구성요소가 조합되어야 제 기능을 발휘하며, 전원공급의 유무에 따라 전원을 필요로 하는 Active 형과 내부나 외부로부터 직접적인 전원의 공급없이 리더 기의 전자기장에 의해 작동되는 Passive 형으로 구분
 - Active 타입은 리더기의 필요전력을 줄이고 리더와의 인식거리를 멀리할 수 있다는 장점이 있으나, 전원공급장치를 필요로 하기 때문에 작동시간의 제한을 받으며 Passive 형에 비해 고가인 것이 단점
 - 반면, Passive 형은 Active 형에 비해 매우 가볍고 가격도 저렴하면서 반영구적으로 사용이 가능하지만, 인식거리가 짧고 리더기에서 더 많은 전력을 소모하는 것이 단점

1. 수동형 / 능동형 태그의 특징

- RFID 태그는 소형 IC Chip과 안테나, 메모리, 건전지 등을 내장하고 있으며, 저장된 데이터를 에어(Air) 프로토콜을 통해 전송함
- IC Chip은 식별코드 및 바이너리 데이터를 저장할 수 있으며, 보통 1비트에서 521Kbvte 크기의 메모리를 탑재함
- RFID 태그는 크기, 치수, 용도에 따라 다양하게 분류할 수 있으며, 주파수 대역에 따라 데이터 인식거리가 상이함
- 통상적으로 주파수 대역에 따른 분류를 통해, 태그 내 전원 내장 여부에 따라 능동형과 수동형 타입으로 구분함
- 능동 태그(Active Tag)는 전지나 전력의 공급을 통해 자체적으로 정보를 송신하는 타입으로 넓은 통신거리와 메모리 크기에 제한이 없음
- 수동 태그(Passive Tag)는 태그 내 안테나로 들어오는 전파를 전원으로 사용하여 정 보를 송신하는 타입으로 리더와 정보통달 거리가 능동형에 비해 짧음

구 분	가격	도달거리	특 징
수동 태그	저가 (약 500 ~ 5,000원 정도)	수 cm [~] 수 m	- 소량, 경량 - 반 영구적으로 사용 가능 - 태그에는 ID와 128bit의 메모리 저장
능동 태그	고가 (약 10,000 이상)	수십 m ~ 수백 m	 전지 수명 (1~10년) 리더, 기타 장비에 직접 엑세스 가능 센서 데이터 및 사용자 데이터 저장 가능 433MHz, 2.45GHz 대역의 주파수를 주고 사용함

2. ISO/IEC 18000 시리즈

가. ISO/IEC 18000 시리즈 비교

- RFID 주파수 관련 표준인 주파수 대역별 무선 인터페이스(Air Interface)는 ISO의 WG4 내에서 3번째 서브그룹(SG3)에서 검토
- 국제 RFID 공식표준화 기구 : ISO/IEC JTC1/SC3
- SC3의 주파수 대역에 따른 표준화 검토 내역은 모두 8개의 그룹으로 구성되어 있음

그룹명	ISO/IEC	작업명	현단계	비고
	18000-1	Generic Parameters	IS	변수 규정
	18000-2	Below 135KHz	IS	동물관리 등
	18000-3	13.56MHz	IS	IC카드, 도서
Air	18000-4	2.45GHz(Active/Semi-Active)	IS	뮤칩, 능동 RFID
Interface	18000-5	5.8GHz	철회	-
1110011000	18000-6	860 - 960MHz	IS	유통 물류
	18000-7	433MHz(Active)	IS	컨테이너 관리
	18000-8	Elementary Tag Func.	NP	Read Only

- RFID 주파수 대역으로는 LF(123KHz), HF(13.56MHz), UHF(433/900MHz), MicroWave(2.4GHz)
 등의 대역이 있으며, 이중 항만 및 유통 물류와 관련된 것은 UHF(433/900MHz) 대역을 중심으로 형성되고 있음.
- 433MHz 대역의 능동형 RFID 분야에서는 미국의 SAVI가 기술 및 표준을 주도하고 있으며, 관련 ISO 표준에 가장 근접한 리더 및 태그 제품들을 출시 중
- 860~930MHz 대역의 air interface 표준은 ISO/IEC 18000-6과 산업 표준인 EPCglobal class1 gen2가 병립하고 있었으나, EPCglobal class1 gen2가 ISO/IEC 18000-6 Type C로 포함되어 공식적인 ISO 국제 표준으로 성립됨으로써 문제 해결됨
- SAVI의 제안으로 만들어진 433MHz 대역의 air interface 표준인 ISO/IEC 18000-7는 Tag Memory Map을 접근하기 위한 Database 구축을 포함하고 있으며 개정이 완료됨

나. ISO/IEC 18000-6 시리즈 비교

- ISO/IEC 18000-6 (860~930MHz, UHF) 시리즈는 마이크로 파형에 의해 통신하며, 타입 A, B, C의 세 가지 제안 방식이 있음
- 미국에서는 FHSS 방식이 주류이며, 통신거리는 2M 이상 가능함

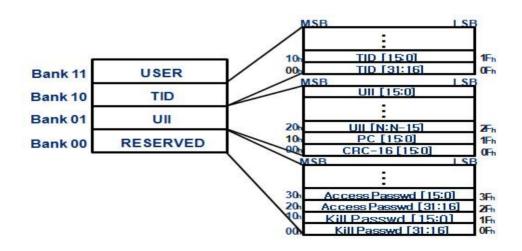
	Items	Type A	Type B	Type C	
Propos	sed Company	Tagsys, TI, Bistar Intermec, Phillips		EPCglobal	
	Data Rate	33Kbps	10~40Kbps	40~160Kbps	
Reader	Modulation	ASK 27~100%	ASK 18 or 100%	DSB-ASK, SSB-ASK, PR-ASK 90%, Nominal	
	Coding	PIE	Manchester	PIE	
	Data Rate	401	√bps	FM0:40~640Kbps Sub-Carrier:5~320Kbps	
Tag	Modulation	Bi-sta	te Amplitude Modulation	Backscatter	
Coding		F	FM0		
Collisio	on Avoidance	ALOHA	Binary Tree	ALOHA with permission	

○ 한국, 일본은 자국 내 전파 사정으로 반대 입장을 표명한 바 있으나, 현재 물류·유 통 산업의 국제화를 위해 사용되고 있음

	Memory Address	Memory Content	Lock status	Comment
ID	Byte 0, 1	E0, 04 hex	Locked	Unique serial number
(64bit)	Byte 2~7	xx hex	Locked	Unique serial number
	Byte 8~10	00 hex	Unlocked	User memory
User	Byte 11	02 hex	Unlocked	User memory
memory	Byte 12~17	FF hex	Unlocked	User memory
(216byte)	Byte 18~219	00 hex	Unlocked	User memory
	Byte 220~223	57, 5F, 4F, 4B hex	Unlocked	"w_ok" in ASICII, User memory

○ ISO/IEC 18000-6B 메모리 구조(항만물류에 적용된 차량태그)

○ 차량용 태그 900MHz User 영역 필드정의(6B)


Byte	0-7	8,9	10,11	12-17	18-32	33And Above
Field Name	Tag ID	Tag 제조사	Tag H/W Type	Tag Memory LayOut	Truck Number	User Data

필드명	Byte 수	메모리 시작 번지
차량번호	15	6B : 태그 메모리영역 18번지

○ 차량용 태그 900MHz User 영역 필드정의(6C)

구성요소 Bank01내의 주소		Bank01내의 주소	기능		
	length	10h~14h	'Bank 01에서 CRC-16을 뺀 Word 길이'-1 (max 32 word)		
l DC	RFU	15h~16h	15h는 User Memory의 사용여부 (set"00")		
	PC Toggle 17h		'0'이면 EPC, '1'이면 Non-EPC 정보가 기록됨		
	AFI	18h~1Fh	다양한 태그의 데이터 정보 식별(KSxISO/IEC 15961)		
TID	AC	AC 00h~07h KSxISO/IEC15963(E0h,E1h) or EPC(E2h), type B(E0H			
TID	TID 08h ~		태그공급자 번호 및 태그 일련번호		

필드명	Byte 수	메모리 시작 번지
차량번호	15	6C : USER영역(Bank 11)0번지

<그림 3-1> 18000-6C 논리적 메모리 맵

- 최근 ISO/IEC 18000-6은Type C라는 명칭으로 EPCglobal의 Class1 Generation2(이하 Gen2)를 승인함
- Gen2는 2005년 1월에 ISO가 EPCglobal로부터 제안을 받아, 2006년5월에 완성됨
- Type C에서 옵션으로 규정하고 있는 핵심기능인 Dense Reader Mode는 국내 주파수 대역 특성으로 인하여 국내에서 사용되지 못하고 있음

다. ISO/IEC 18000-7

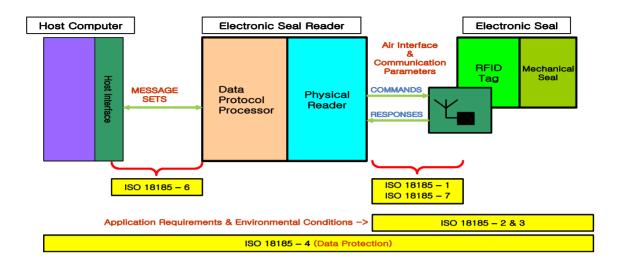
items		18000-7		
Proposed Company		SAVI (USA)		
Power		Active		
	Carrier Frequency	433.92MHz		
	Access Mode	Narrow Band		
Reader	Data Rate	27.7Kbps		
	Modulation	FSK (Frequency Shift Keying)		
	Coding	Manchester		
	Data Rate	27.7Kbps		
Tag	Modulation	FSK		
	Coding	Manchester		
Collision Avoidance		Deterministic		

- ISO/IEC 18000-7 시리즈.는 433MHz의 주파수 대역 사용에 대한 기술 사양을 규정하고 있음
- 마이크로파의 통신방식과 약 100M의 통신거리를 가지고 있지만, 일부 국가에서는 ISM 대역으로 지정되어 있지 않아 사용이 허가되지 않고 있음
- 특히, 미국과 유럽에서는 사용 가능하지만 ITU-R의 주파수 분류상 제 3지역(아시아 / 오세아니아 지역)에서는 ISM 밴드로 지정되어 있지 않음
- ㅇ 현재 제 3지역에서는 컨테이너 관리를 위한 제한된 영역에서만 사용 허가
- ㅇ 국내 표준화 현황
 - 2004년 10월 433MHz대 주파수 분배방안에 대한 공청회를 개최하였고, 산학연 등 각계의 의견을 수렴하여 2004년말 주파수 분배를 확정하고 고시

- 430 ~ 440MHz 주파수 대역은 아마추어국 지정주파수(435MHz), RFID/USN, 그리고 특정소출력(데이터전송용)에서 나누어 사용. 이 중, 433.67~434.17 Nb의 주파수대 역은 항만, 내륙 컨테이너집하장, 부두창고 등 컨테이너 집하·관리 장소에 한하여 RFID/USN(Radio Frequency IDentification/ Ubiquitous Sensor Network)용으로 사용

프로토콜 ID	태그 상태	메시지 길이	리더기 ID	태그 제조사 ID	태그 S/N	명령어 코드	데이터	CRC
0x80	2bytes	1bytes	2bytes	2bytes	4bytes	1bytes	N bytes	2bytes

- 컨테이너용 RFID(433MHz) 데이터 구조
 - 컨테이너용 RFID 태그 기본데이터
 - . 프로토콜ID, 태그상태, 메시지 길이, 리더기ID, 태그제조사ID, 태그S/N, 명령 어코드
 - 유저 Memory(데이터)
 - . 1회 읽을수 있는 용량 : 32bytes
 - CRC : 에러체크


3. ISO/IEC 18185(e-Seal / 컨테이너 전자 봉인 장치)

○ ISO18185 시리즈는 전자 씰(e-Seal)에 대한 통신 프로토콜, 어플리케이션 요구사항, 정보보호에 대한 정의 및 규격을 표준화 한 내용

규격번호	프로젝트	현재 단계	비고
18185-1	Communication Protocol	IS	2007년 4월
18185-2	Application Requirements	IS	2007년 4월
18185-3	Environmental characteristics	IS	2006년 5월
18185-4	Data Protection	IS	2007년 4월
18185-5	Sensor Interface	IS	2007년 5월
18185-6	Message set for transfer between seal reader and host computer	Removal	UN/EDIFACT
18185-7	Physical Layer	FDIS	18000-7과 관계 됨.

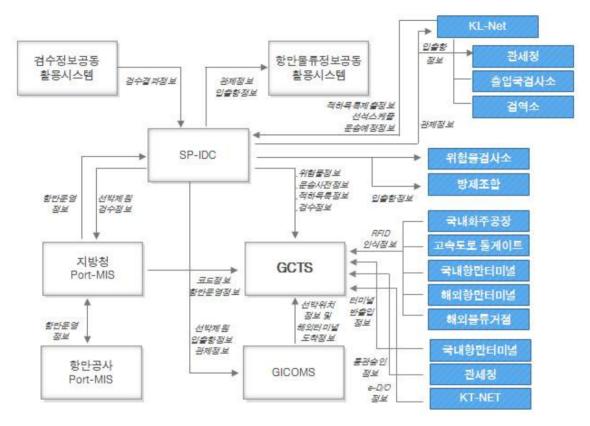
○ 국제 E-Seal 공식표준화 기구 : ISO/TC104/SC4/WG2에서 논의

○ E-Seal 관련 국제 표준은 아래 그림과 같이 구성되어 있으며, 관련 표준들은 2007년 상반기에 제정이 완료

<그림 3-2> E-Seal 관련 국제 표준 구성

- ISO 18185 표준은 최초에 모두 7개의 part로 구성되었으나, ISO 18185-5는 철회되어서 모두
 6개의 part가 있으며, 이 중 리더와 E-Seal 간의 communication protocol을 정의하는 ISO 18185-1과 Physical Layer를 정의하는 ISO 18185-7 표준이 가장 기반이 되는 표준들임
- ISO 18185-7은 최초에는 E-Seal 시스템에서 사용되는 주파수 대역으로 433MHz 대역을 언급하였음. 하지만 최근의 ISO/FDIS 18185-7 표준 문서(2006/10/31 문서)에 따르며 433MHz 대역을 사용하는 Type A와 2.4GHz 대역을 사용하는 Type B의 두가지 형태로 분리되었으며, LF를 병행해서 사용하는 것에 관한 내용이 추가됨
- eSeal 국제 표준 참여 국가 및 기관
 - 한국: KATS, ETRI, HAU, LIT 등
 - 미국 : DoD, DHS, QED, Savi, Transcore, WSC, E. J. Brooks, Motorola
 - 이스라엘 : Hi-G-Tek, Allset
 - 싱가폴 : PSA
 - 일본: METI, NYK 등
 - 중국: YICT, SCTCN, CWCCT 등
 - 홍콩 : HIT, Modern Terminals 등

제2절 RFID 정보흐름 프로세스


- 컨테이너 추적관리시스템(Global Container Tracking System)은 RFID 기반의 물류정보 네트워크를 구축하여 차량・컨테이너의 물류거점 반출입 정보를 실시간으로 수집하여, 컨테이너 또는 B/L 번호 등을 이용한 컨테이너 및 화물의 위치 추적을 조회하고 정보를 제공하는 물류정보시스템
- 그동안 수행된 RFID 기반의 컨테이너 추적관리 시스템 구축 현황은 다음과 같음
 - "RFID 기반 항만물류효율화사업" 시범사업 수행 : '04.12 ~ '05.08
 - "RFID 기반 항만물류효율화사업" 1단계사업 수행: '06.06 ~ '06.12
 - · 부산지역 '컨'터미널, 내륙ICD, 미서부 3개 '컨'터미널에 RFID/USN기반 시스템
 - "RFID 기반 항만물류효율화사업" 2단계사업 수행: '07.07 ~ '07.12
 - · 전국 '컨'터미널 및 미주 중부 1개 '컨' 터미널에 RFID/USN기반 시스템 구축
 - "글로벌 물류·무역 정보망 구축 사업" : '09.07 ~ '09.12
 - · 함부르크,슬로베니아 및 중국 5개 '컨'터미널 거점에 화물추적 Infra 구축
- 2010년 수행예정인 사업은 다음과 같으며 해당 사업은 이후에도 계속되어 2012년까지 지속될 것으로 전망
 - "글로벌 물류·무역 정보망 구축 사업" : '10.04 ~ '10.12(예정)
 - · 중국, 일본, 러시아, 미국 서부 '컨'터미널 거점에 화물 추적 Infra 구축
- GCTS 서비스 내역

연계 구간	연계정보
SP-IDC	- 위험물 정보, 운송사전정보, 적하목록제출정보 등
Port-MIS	- 항만운영 관련 코드 정보, 운영 정보 등
GICOMS	- AIS 기반의 선박 위치 정보 및 해외 터미널 도착정보
검수정보 공동활용	- 컨테이너 양적하 검수 결과 정보
항만물류 통합활용	- 국토부, 관세청, CIQ 기관의 인허가 정보
해외항만 및 화주공장	- RFID 기반의 컨테이너 추적 정보
국내 16개 '컨'터미널	- '컨'터미널 반출입 정보
관세청	- 수출입 인·허가 승인 정보('10년 구축 예정)
KT-NET	- e-D/O 정보('10년 구축 예정)

- 수출입 화물과 관련된 다양한 정보를 GCTS에 연계 확보하여 RFID 기반의 컨테이너 단위 추적 정보외에, 해당 화물 및 운송선박들에 대한 인·허가 정보 및 위치 정보를 제공함

○ GCTS 프로세스

- GCTS의 정보흐름 프로세스는 컨테이너 및 화물추적을 통한 RFID 인식정보와 유관 기관 연계를 통해서 부가정보 제공 서비스로 구분
- RFID 인식 정보는 국내외 화주거점, 고속도로톨게이트, 항만터미널, 해외터미널 및 해외물류거점에서 인식된 실시간 RFID 인식정보를 수집하여 화물정보를 추적

<그림 3-3> GCTS 정보 흐름 프로세스

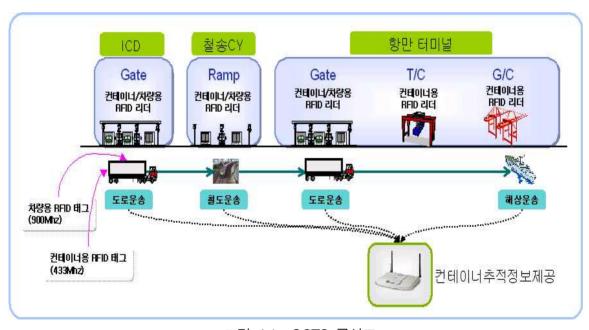
- 유관기관 연계를 통한 부가정보 제공 서비스는 위험물 정보, 적하목록정보, 관제정보, 항만운영 정보, 통관정보등 '컨'화물의 물류 흐름에 대한 상세 추적 정보를 제공
- 또한 "글로벌 물류·무역 정보망 구축 사업"에서 국내 각 컨테이너 터미널에서 제공 된 터미널 CODECO 정보와 RFID 인식 정보를 활용하여 주/월/년 단위로 정확한 국내 컨테이너 수출 물동량 통계 정보 제공 서비스가 가능

제4장 RFID 정보의 국가교통DB 활용방안

제1절 GCTS 축적 정보 활용 가능성 제2절 RFID 정보 활용 실태

제4장 RFID 정보의 국가교통DB 활용방안

제1절 GCTS 축적 정보 활용 가능성


1. GCTS 개요¹⁾

- GCTS는 RFID 기반의 물류정보 네트워크를 구축하여 차량・컨테이너의 물류거점 반출・입 및 장치・하역 작업 결과를 실시간으로 자동 수집함으로써, 컨테이너/BL번호 등을 이용한 컨테이너 및 화물의 위치추적을 조회하고 정보를 제공하는 물류정보시스템임
 - 컨테이너 터미널의 게이트, 장치크레인, 하역크레인 등의 항만 시설 및 장치에 대한 운영현황 파악, 다양한 거점 및 구간의 수출입 물동량 및 리드타임 분석 등을 전 세계 어디에서나 인터넷을 통해 확인 가능
 - GCTS는 추적 데이터 자동 수집을 위한 RFID태그, 리더, 미들웨어, 컨트롤러, 운영서버 및 네트워크 등의 RFID 인프라와 태그의 부착, 등록, 리더 설치 및 운영을 위한 운영관리 시스템, 각 거점의 리더를 통해 실시간으로 수집된 정보를 활용한 컨테이너/차량/화물의 추적, 항만 시설의 운영현황, 물류 리드타임 제공을 위한 위치추적 시스템으로 구성

¹⁾ GCTS에 대한 설명은 각 절별 내용에 맞추어 기술되어 여러 절에서 중복적으로 다루고 있음

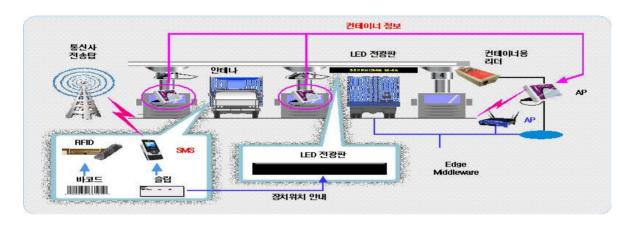
2. GCTS 활용 가능 정보

- GCTS는 컨테이너/화물의 위치 추적, 항만시설 및 장치에 대한 운영현황 파악, 다양한 거점 및 구간의 수출입 물동량 및 리드타임 분석이 가능한 정보시스템임
- GCTS는 운영관리 측면, 위치추적 측면, 물류분석 측면 및 정보제공 측면의 4개 관리 측면으로 구분
 - 운영관리 측면에서의 하위기능은 시스템 운영에 필요한 코드 관리, 시스템 운영에 필요한 기본 정보 관리, GCTS 사이트 가입자들의 권한 부여 및 정보 관리 기능
 - 위치추적 측면에서의 하위기능은 차량, 컨테이너, 선박 및 화물의 위치 추적관리, 차량 및 컨테이너의 거점별 현황 파악, 태그 배터리 및 장비의 상태를 모니터링 기능
 - 물류분석 측면에서의 하위기능은 하역장비, 차량 및 컨테이너의 운영성과 관리, 차량, 컨테이너의 Turn-around Time 및 수출입, T/S의 리드타임 관리 기능
 - 정보제공 측면에서의 하위기능은 차량 추적정보 알림 신청 및 조회, EDI신청, 신청 현황 조회 및 승인 관리, EDI, Socket, SMS로그 조회 및 삭제 등 로그 관리 기능

<그림 4-1> GCTS 구성도

- 국가교통DB와 관련하여 GCTS에서 관리하는 정보를 살펴보면 위치추적 측면에서의 정보활용이 가능
 - 즉 차량, 컨테이너, 선박 및 화물의 위치 추적관리, 차량 및 컨테이너의 거점별 현황 파악이 장래에 가능하게 되므로 이들 정보를 활용하는 경우 컨테이너 운송차량과 컨테이너 자체에 대한 이동경로 파악이 가능
 - RFID 리더기를 비롯한 관련인프라의 확산이 관건이지만 국토해양부에서 지속적으로 관련 사업을 추진하고 있으므로 적어도 물류거점간 컨테이너 이동 정보는 확보가 될 수 있을 것으로 예상
 - 화주 단위의 인프라 설치까지는 많은 시간이 걸릴 것으로 예상되나 톨게이트에서는 관련 정보를 확보할 수 있을 것으로 판단되므로 톨게이트와 물류거점간 이동정보는 향후에 확보할 수 있을 것으로 판단됨

<그림 4-2> GCTS 유관정보망 정보연계도


제2절 RFID 정보 활용 실태

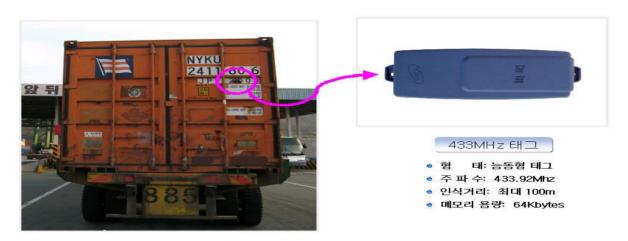
- 수출·입 화물 관련 항만물류분야는 항만물류 효율화를 통한 수출입화물 관련 기업의 물류비용 절감과 항만 생산성 향상이 국가 경제에 미치는 영향이 대단히 큰 분야이며, 대규모 물류의 흐름 및 실시간 화물 추적 필요성이 절실히 요구되는 분야임
- 이러한 수출・입 화물 관련 항만물류분야를 항만운영 효율화 측면과 화물 및 컨테이너 추적 측면으로 구분하여 발생되는 문제점들을 분석한 후, 항만물류분야의 RFID 기술 활용 항만물류 효율화 방안을 도출

1. 게이트 출입관리

- 항만터미널 게이트 반입업무는 컨테이너가 게이트 도착 시, RFID 태그를 이용하여 차량 및 컨테이너 정보를 자동 인식, 확인함으로써 컨테이너 반입 인증 및 승인이 자 동으로 처리
 - 해외 수입항 터미널 게이트 반출업무는 해외 수입항에서 컨테이너의 게이트 반출시, RFID 태그를 이용하여 컨테이너 정보를 자동 인식, 확인함으로써 컨테이너 반출 정보가 자동으로 처리되는 업무로 이루어짐
- 현행 항만에서의 게이트 출입관리의 문제점들은 기존 바코드방식은 차량번호에 의한 출입관리방식으로 실제 컨테이너 확인에 대한 신뢰성 향상이 필요한 실정
- 컨테이너 확인을 위한 영상인식기술이 사용되고 있는 터미널이 있지만, 날씨 변화에
 따라 약 70%에 이르는 낮은 인식율로 활성화되고 있지 못한 실정임
- 기존 게이트 출입관리는 차량 및 컨테이너 확인 후, 장치 위치 확인을 위한 지시서 출력을 위해, 컨테이너 운송 차량이 게이트 전면 도로에 정체하는 상황이 발생하여 항만 생산성 감소와 터미널 게이트 주변 교통 정체를 야기 시킬 수 있음
- 이러한 RFID 기술을 활용한 게이트 출입관리는 차량 및 컨테이너에 각각 RFID 태그를 장착하여 실제 차량 및 컨테이너를 확인하는 방식으로 전환이 가능함

- 게이트 출입 허가 여부를 신속하게 판단한 후, 터미널 내 컨테이너 장치 위치에 대한 정보를 PDA, 대형전광판 등의 표시 장치를 통하여 차량기사에게 직접 알려 주어 차량 및 컨테이너 무정차 게이트 운영 방식을 실현하여 출입 오류 제거, 항만 내 보안 등 게이트 생산성을 향상시키고, 게이트 주변 교통 정체상황 유발을 최소화시킬 수 있음

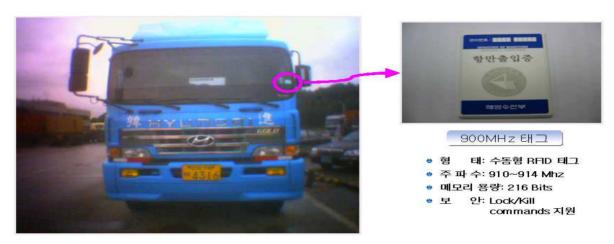
<그림 4-3> RFID 게이트 반출·입 업무 구성도


<그림 4-4> 게이트 반출·입 RFID 장비 설치사례

2. RFID 운영 및 관리업무

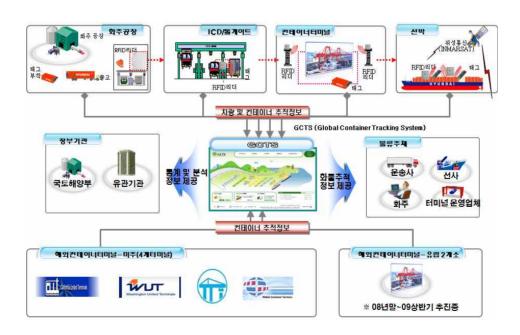
- 태그 등록 관리업무는 차량에 부착되는 태그는 승인된 차량의 검증을 위하여 검증된 장소에서 기록하여야 하며, 컨테이너 태그는 ICD에서 컨테이너 반출 시, RFID 태그를 부착하고 컨테이너 번호를 기록하여 관리하여야 함
 - 이때, ICD 게이트 반출시, 철도CY 게이트 통과시, 항만터미널 게이트 반입 시, 장 치장에 장치 시, 선적 시의 시점정보(거점정보 + 일시)를 RFID 태그 정보와 함께 관련 시스템과 연계되어 등록정보 및 시점정보를 관리함
 - 물류거점정보화사업에서 ICD 및 철도CY의 RFID를 활용한 게이트운영시스템 구축
 - 기타 운영정보관리업무는 구축 시스템의 원활한 정보 관리를 위하여 기본적으로 필 요한 정보 관리를 위한 정보처리 서비스를 제공함

가. 컨테이너 태그 부착


○ 컨테이너 후방 중간 높이 이상의 외부 표면 오목한 부분에 부착하여 리더를 통하여 인식

<그림 4-5> 컨테이너 태그 부착 사례

나. 차량용 태그 부착


차량의 진입방향과 리더와의 거리가 최단거리가 되는 차량 전면 유리의 운전자 가슴
 높이에 태그를 부착하여 리더를 통하여 인식함

<그림 4-6> 컨테이너 태그 부착 사례

3. 화물 및 컨테이너 추적

- ICD부터 철송, 수출항, 수입항에서의 하역 및 게이트 반출 시점까지 컨테이너 및 차량의 이동 전 과정을 거점별 실시간으로 추적함
 - 태그 기록 정보는 각 거점에 설치된 리더기를 통하여 물류추적정보시스템(GCTS)에 실시간으로 전송되어 해당 고객에게 트래킹 정보를 서비스로 제공함
 - 화물 및 컨테이너 추적 측면은 화물 추적관리와 컨테이너 재고관리부분으로 구분
- 화주는 이송을 허락한 컨테이너가 최초 선정된 거점이 아닌 다른 거점에 장치되거나, 이동 도중일 경우 현재의 컨테이너 화물 관련 정보의 파악과 복합운송 사용 등 컨테 이너 이송 노드간의 물류거점별 정보화 수준 및 연계화 수준에 차이가 있어 전체 물류 네트워크에 대한 화물정보 추적에 한계가 있는 실정임
- 이러한 RFID 기술을 활용한 항만 내 화물 추적관리의 효율화는 각 물류거점의 게이트에 RFID 리더를 설치하여 각 거점별 화물 반출・입 상황을 실시간으로 정보 제공이 가능
 - 이를 통해 거점별 정보화 수준 격차를 해소하고, 거점별 전체 물류네트워크에 대한 화물 추적정보 서비스 수준을 향상시킬 수 있음
 - · RFID 기술을 활용하여 운송모드에 상관없이 전체 물류운송 네트워크에 대한 화물추적정보를 정보의 단절 없이 제공받을 수 있음

<그림 4-7> RFID 기반 화물 추적 시스템 개념도

4. 민간사례

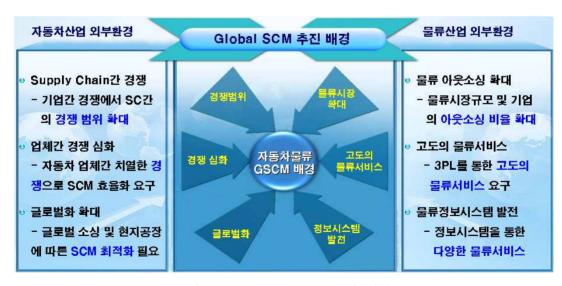
가. 현대글로비스 "RFID기반의 글로벌 u-SCM 구축" 사례

- 글로비스는 지난 2006년 산자부 주관 IT혁신 네트워크 구축사업인 'RFID기반의 글로벌 u-GLI 시스템 구축 사업'에 공모, 자동차부문에 선정
 - 회사 측은 2년간 정부출연금 약 16억원, 민간부담금 약 15억원을 투자해 현대자동차 미국 공장을 대상으로 총 6단계의 물류수행 체제를 개선
 - 이와 관련 글로비스는 협력사에서부터 해외 고객사까지의 전 구간에 걸쳐 RFID기반의 글로벌 u-SCM 종합 시스템을 구축, 정확한 정보를 실시간으로 제공하고, 사전 지원 판단 정보체제를 갖춰 결품방지 및 긴급 운송비(항공비)등 원가절감을 이뤄내는데 주력
 - 그 결과 협업 시스템을 통해 납기 준수율을 43%에서 85%로 향상. 하루에서 이틀 정도 소요되던 협력사 긴급 오더에 대한 대응을 당일 처리할 수 있게 됐으며, MILK-RUN(공동순회방식)시스템을 통해 적재율도 30% 향상
 - 또 日 직납 차량수 축소를 통한 물류비 절감 및 u-JIT(조달 안정화)시스템을 통한 입고율 향상으로 항공비를 50% 절감
 - 동사는 "연간 110억의 비용절감 효과를 달성했으며, 특히 RFID를 이용한 시스템 자동화 결과 검수 인원 증가가 억제돼 장기적으로 수익성 개선에 기여
- 부품세트 케이스에 RFID 부착, 가시성 확보
 - 글로비스는 2004년 완성차 단위별 조립용 부품세트로 수출하는 형태인 CKD사업을 시작해 현대자동차 미국공장, 유럽공장 및 기아자동차 유럽공장, 중국공장을 대상으로 연간 58만대(2008년) CKD부품을 공급하고 있으며 현지 고객사에게 부품을 해당 공장까지 조달
 - 현대/기아차 해외공장에 생산되는 차종의 부품을 발주 및 조달, 입고, 포장, 운송 등의 여러 단계를 거치는데 협력사 발주부터 현지 물류센터의 재고까지 각 사별 여러 문제점들이 발생
 - 특히 CKD센터 내 완성케이스 완료보고 및 컨테이너 적입처리시 수작업에 의한 누락 발생으로 입출고 현황이 부정확. 이에 글로비스는 완성 케이스에 RFID 태그를 부착해 완성케이스 완료보고 및 컨테이너 적입처리를 해 실제 입출고 수치와 서류상의 입출고 수치의 차이를 제로화 함으로써 물류 가시성 및 추적성을 확보

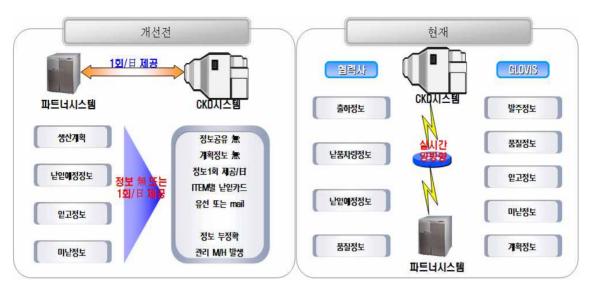
- 또 협력사의 납기 미준수와 미납 발생의 문제에 대해 RFID기반으로 진행 공정을 판별해 필요부품의 자동 산정과 요청이 시행되는 시스템인 u-JIT SYSTEM을 통해 실시간 납입 모니터링 체제 구축으로 조달물류의 효율성을 제고

○ 글로비스 CKD 업무프로세서

- CKD(Complete Knock Down) : 완성차 조립용 부품의 해외 현지공장에 완전 분해된 단위로 수출하는 형태


<그림 4-8> CKD 방식의 자동차 물류 개념도

- 협력사 상생 INFRA 구축으로 부품의 Packing 단위별 정보를 관리하고, 거점별 컨테이너 위치 정보를 실시간 공유하여 Global SCM상의 부품 가시성 확보 및 조달 안정화를 통한 협력사 생산성 향상


<그림 4-9> RFID 기반 화물 추적 시스템 개념도

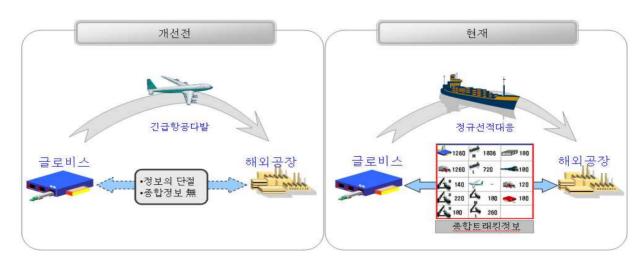
- 자동차산업 SCM 특징
 - 다수의 부품업체가 연계된 Supply Chain 구조
 - · 외주조달 비율 : 78.8% (제조업 평균 68.8%)
 - · 1차 부품업체(300~400개)와 2차 부품업체(600여개)가 연계되어 공급체인 형성
 - 완성차 해외 생산기지의 다양화 및 글로벌 소싱 확대
 - · 자동차 생산기지 확대에 따라 Supply Chain 연장 및 확대
 - · 글로벌 소싱으로 공급사슬이 다변화되고 복잡하게 변모
 - · 국내 완성차업체는 '98년부터 수출이 내수판매 추월(수출:700%이상)
 - Supply Chain 상 고비용 형태의 구조
 - · 업체간 협업 네트워크 구축 유지비용이 높음.
 - · Supply Chain간 고물류 비용으로 운영(전용차량, 재고비용)
- Global SCM 추진 배경
 - 자동차산업의 물류에 있어 자동차산업의 경쟁의 범위확대, 경쟁 심화, 글로벌화 및 물류산업의 물류 아웃소싱 확대, 다양한 물류서비스 요구, 물류정보시스템 발전 등의 외부적인 환경이 Global SCM 혁신을 요구하고 있음

<그림 4-10> Global SCM 추진 배경

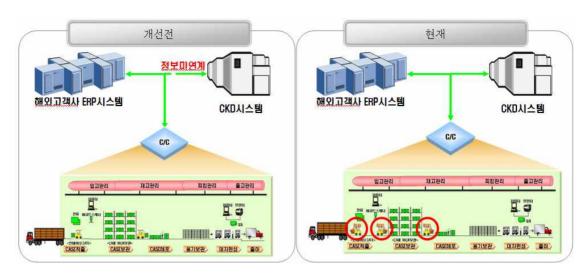
- Global SCM 상의 Visibility의 확보를 통한 안정적 공급체제 구축을 위하여,
 - 발주정보의 협력사와 커뮤니케이션 강화를 통한 조달지원 체제 향상
 - · 일배치 단방향 방식의 정보전달 체제 → 실시간 양방향 방식의 정보 전달 체제
 - · 협력사 납품 진도 정보 확인 곤란 → 협력사 납품 진도 확인 가능

<그림 4-11> RFID 도입 전후 업무프로세스 비교

- 실시간 조달 모니터링 체제 구축으로 납기 준수 및 입고율 향상
- · 납품 지연 및 미준수 협력사 다수 → 납입 현황판에 의한 실시간 납입 모니터링
- · 특정시간 편중으로 납품지체 빈번 → 납품 평준화로 납품차량 분산


<그림 4-11> RFID 도입 전후 업무프로세스 비교(계속)

- RFID기반의 CKD 센터내 공정별 실적처리 자동화 체제 구축
- · 바코드에 의한 포장 실적 처리로 오류 다발 → RFID를 이용한 포장 실적 처리
- · 수작업 컨테이너 정보 처리로 공수 多 → RFID를 이용한 컨테이너 적입 처리


<그림 4-12> RFID 도입 전후 CKD 센터내 업무비교

- 컨테이너 RFID를 이용한 실시간 구간별 재고 모니터링 체제 구축
 - · 현지 재고를 두고, 긴급 항공 요청 발생 → 국내~해외 거점별 종합트래킹 정보 개발
 - · 국내~해외 전 공급망 통합 정보 無 → 개발 정보의 공유화 (부품업체~글로비스)

<그림 4-12> RFID 도입 전후 CKD 센터내 업무비교(계속)

- 지게차 RFID를 이용한 실시간 재고 및 Location 관리 체제 구축
- · 바코드 처리로 M/H(Man/Hour) 증대 → RFID를 이용한 실시간 재고정보 구축
- · 재고정보 부정확으로 돌발 결품 발생 → RFID를 이용한 Location 관리

<그림 4-12> RFID 도입 전후 CKD 센터내 업무비교(계속)

○ 글로벌 선진물류 시스템 구축을 통한 低비용, 高효율 체제 구축

항 목	개선전	개선후	
납기 준수	43%	90%	
운송트래킹	없음	시스템	
납품대기 시간	2시간 이상	1시간 이내	
입고처리	낱장처리	일괄처리	
생산체제	PUSH	PULL	
실적처리	바코드	RFID	
재고정보	일(日) 배치(Batch)	실시간	

- Global SCM 구축을 통하여 글로비스 협력업체의 항공비 및 긴급 운송비 18억, 글로 비스의 부품수율개선 및 공수절감 13억, 현대자동차 미주 법인의 항공비 및 재고비 절감으로 79억 총 연간 110억원 절감

제5장 결론 및 정책제언

제1절 결론

제2절 정책제언

제5장 결론 및 정책제언

제1절 결론

- 항만물류 분야에서 RFID의 활용은 컨테이너 위주로 진행됨. 이는 컨테이너가 기기단 위로 운송, 하역, 보관, 선적 되는 등 관리가 용이하고 단일화 되어 있어 적용이 다 른 대상에 비해 상대적으로 용이하기 때문임
 - RFID 기반의 항만물류 효율화 사업 등을 통해 설치된 RFID 시스템은 기본적으로 컨테이너 터미널, ICD 및 고속도로 등 RFID 리더가 설치된 지점에서 컨테이너 태그정보를 인식하면서 운영
 - 인식된 정보는 해당물류주체가 게이트 반출입 등 각종업무에 활용하는 동시에 GCTS에 전송이 되고 있음
 - GCTS에 전송된 정보를 활용하여 물류거점간 컨테이너의 이동정보를 확인할 수 있음
- 항만터미널 게이트 반입 시, ICD 게이트 반출시, 철도CY 게이트 통과시, 장치장에 장치 시, 선적 시의 시점정보(거점정보 + 일시)를 RFID 태그 정보와 함께 관련 시스 템과 연계되어 등록정보 및 시점정보를 관리할 수 있음
 - 현재는 리더기가 설치된 지점에서의 시점정보를 중심으로 정보가 관리되고 있으나 향후에는 주요 권역간 이동 정보를 활용
 - 항만별, 터미널별 반출입 물량, 시점정보 등을 활용하여 컨테이너 물류패턴조사에 활용
 - 권역간(존) 이동 정보 연계를 통하여 컨테이너의 운영경로 및 운송시간 분석에 활용

제2절 정책제언

- 실제로 RFID 정보를 컨테이너 화물의 기종점 자료의 보완 자료로 활용하기 위해서는 자료의 신뢰성에 대한 검증, 충분한 샘플의 확보, 지속적인 자료 제공 체제 및 제공 된 정보를 분석할 수 있는 분석체계의 마련이 중요
 - 아직 물류거점과 항만간 RFID 정보 연계가 원활하게 이루어지지 않고 있는 상태이기 때문에 권역간 이동정보를 활용하는데는 한계. 이는 아직 물류거점에 대한 RFID 인 프라가 충분히 설치되지 않았기 때문임. 아울러 관련주체들이 자발적으로 관련정보를 전송하는 체제가 아직 정착되지 않아 관련 정보를 충분히 확보하지 못하고 있음
 - 따라서 관련 시스템간의 연계가 무엇보다도 중요하며 관련 당사자들의 공감대 형성이 필요
- 컨테이너 터미널의 반출입 정보를 우선적으로 활용
 - 특정시점에서의 통행특성 분석에 활용. 항만간, 터미널간 통행특성 비교
 - 물류거점별 반출입 정보도 관련 당사자의 협력을 통해 활용
- 물류거점별로 인식된 정보를 GCTS에서 취합하여 거점간 운송경로 분석 등에 활용하기 위한 후속연구를 수행할 필요
 - GCTS로 통보되는 정보를 우선적으로 활용하고, 관련 인프라의 확산에 따라 관련 정보가 지속적으로 확보되는데로 이를 활용
 - 개별 시스템의 상호 연계 및 분석시스템 개발에 주력할 필요
- 컨테이너의 이동경로 조사에 활용. 조사시점, 조사지역 및 대상컨테이너를 선별하여 이들 컨테이너의 이동경로를 추적
 - 이동경로 및 이동 시간 등에 대한 정보를 확보하고 이를 분석하여 통행 특성을 파악
 - 운송수단별 정보를 확보하는 경우 조사대상을 대상으로한 수송수단별 분담율 산정을 추진
- 컨테이너 내품정보 등 추가적인 정보가 관리되기 까지는 시간이 소요될 것으로 전망되며 내품정보가 확보되는 경우 보다 다양한 분석이 가능
 - 항만물류 분야에서의 RFID는 이제 도입 및 확산 단계에 있으므로 지속적으로 적용 및 활용방안을 모색할 필요
 - 해외 항만에도 관련 인프라를 설치하고 이를 활용할 수 있는 체제를 부분적으로 갖추고 있으므로 글로벌 SCM차원에서의 활용방안을 연구
 - 국가간 협력을 통해 글로벌 차원의 컨테이너 화물 추적 시스템 구축을 앞 당기는데 기여