목 차

Ŗ.	약

제1장 과업의 개요	1
제1절 과업의 배경 및 목적 / 3	
제2절 과업의 내용 및 범위 / 4	
제2장 교통주제도 활용성 제고방안 연구	7
제1절 국내 NGIS DB 구축성과 조사 / 9	
제2절 교통주제도와 NGIS DB의 융합 및 활용성 제고 / 32	
제3절 교통주제도 사용대상 및 범위 확대 / 40	
제3장 교통시설물 조사 및 교통주제도 구축 공정 개선 연구	63
제1절 상시조사체계 구축 방안 / 65	
제2절 유관기관 협조체계 구축 방안 / 77	
제3절 조사/구축 공정 개선 방안 / 95	

표 목 차

<班 2	- 1>	2009년도 국가GIS사업 시행계획 총괄표	9
<표 2	- 2>	교통분야 기본지리정보 데이터타입 정의	28
<丑 2	- 3>	도로중심선 구축내역 비교	31
<班 2	- 4>	교통주제도 자료 요청 및 이용분야	33
<표 2	- 5>	KTDB 자료의 GIS DB화 검토 ······	41
<班 2	- 6>	대존별 행정구역 코드	44
<표 3	- 1>	1개월 단위 상시조사일정(안)	67
<표 3	- 2>	1분기 단위 상시조사일정(안)	69
<丑 3	- 3>	시범조사 수행 구간 입력자료	70
<班 3	- 4>	유관기관별 자료목록	78
<표 3	- 5>	준공도로 협조자료-현황표(예)	80
<표 3	- 6>	차량 조사의 장단점	97
<표 3	- 7>	조사 및 구축 공정별 현황 정리	103
<표 3	- 8>	조사시스템 개선사항	125
<표 3	- 9>	단말기별 조사 활용	128
<班 3	-10>	교통수단별 조사팀 구성(안)	128

그림목차

<그림 2- 1> 교통분야 기본지리 정보 구축 단계	27
<그림 2- 2> KTDB 자료제공 현황(2009.1~2009.12) ······	32
<그림 2- 3> 교통주제도를 이용한 사업분야	36
<그림 2- 4> 국가교통DB 지도 서비스	38
<그림 2- 5> 도로 구간정보 화면	38
<그림 2- 6> 도로 정보 화면	39
<그림 2- 7> 도로통계 정보 화면	39
<그림 2- 8> 지역간 여객통행실태 GIS Map(총 통행량)	·· 45
<그림 2- 9> 지역간 여객통행실태 GIS Map(목적 통행량(출근, 업무))	46
<그림 2-10> 지역간 여객통행실태 GIS Map(목적 통행량(귀가, 등교))	46
<그림 2-11> 지역간 여객통행실태 GIS Map(목적 통행량(쇼핑, 여가)) ··············	47
<그림 2-12> 지역간 여객통행실태 GIS Map(수단 통행량(승용차, 버스))	48
<그림 2-13> 지역간 여객통행실태 GIS Map(수단 통행량(철도, 항공))	48
<그림 2-14> KTDB 자료의 원본 및 가공	49
<그림 2-15> 지역간 여객통행실태 GIS Map(목적별 지역간 여객OD) ···············	50
<그림 2-16> 지역간 여객통행실태 GIS Map(수단별 지역간 여객OD) ···············	51
<그림 2-17> 지역간 화물통행실태 GIS Map(상업용 화물통행실태)	52
<그림 2-18> 지역간 화물통행실태 GIS Map(비상업용 화물통행실태) ······	53
<그림 2-19> 지역간 화물통행실태 GIS Map(품목별 기종점 화물물동량)	54
<그림 2-20> 사회경제지표 GIS Map(인구수, 종사자수)	55
<그림 2-21> 사회경제지표 GIS Map(지역내총생산, 승용차수) ······	56
<그림 2-22> 자전거 전용도로	57
<그림 2-23> 자전거·보행자 겸용도로	57
<그림 2-24> 자전거·자동차 겸용도로	58

<그림	2-25>	자전거 시설물(편의시설)	59
<그림	2-26>	자전거 도로 조사원장	60
<그림	2-27>	자전거 도로 구축결과	61
<그림	3- 1>	조사지원시스템 조사업무 생성화면	71
<그림	3-2>	조사 업무 정보 입력	72
<그림	3- 3>	조사 관련 정보 저장	72
<그림	3- 4>	ArcMap을 활용한 조사지점 자료 생성	73
<그림	3- 5>	ArcMap을 활용한 ArcPad 입력자료 생성 ·····	73
<그림	3- 6>	노트북을 이용한 현장조사	74
<그림	3- 7>	PMP 및 스마트폰을 이용한 현장조사	74
<그림	3- 8>	지오태그를 활용한 교통시설물 조사 및 촬영된 이미지	75
<그림	3- 9>	실제 촬영 사진(지오태그 이미지)	75
<그림	3-10>	국가교통DB Web GIS 시스템에 갱신된 조사결과 반영	76
<그림	3-11>	준공도로 자료의 반영과정	79
<그림	3-12>	준공도로 협조자료-위치도(예)	80
<그림	3-13>	ITS 표준 노드링크 자료의 반영과정	81
<그림	3-14>	국가교통정보센터	82
<그림	3-15>	ITS 표준 노드링크 관리시스템	82
<그림	3-16>	새주소 도로명 자료의 반영과정	83
<그림	3-17>	새주소안내시스템	84
<그림	3-18>	NGIS 수치지도 자료의 반영과정	85
<그림	3-19>	도로관리통합시스템(HMS) ·····	87
<그림	3-20>	도로관리통합시스템 도로대장 출력화면	88
<그림	3-21>	도로표지안내시스템 구성	89
<그림	3-22>	도로표지안내시스템 업무 구성	90
<그림	3-23>	도로표지안내시스템 화면	90
<그림	3-24>	준공도로 이메일 입력시스템(안)(현황자료 입력)	92

<그림	3-25>	이메일 입력시스템(안)(도로선형 입력)	92
<그림	3-26>	기존 조사 구축 공정 흐름도	98
<그림	3-27>	ArcGIS 서버의 구성	105
<그림	3-28>	ArcGIS Server 아키텍쳐 ·····	107
<그림	3-29>	스마트폰(애플 아이폰, 삼성전자 T-옴니아) ·····	111
<그림	3-30>	PMP(빌립 S5) ·····	112
<그림	3-31>	UMPC(Xplore) ·····	112
<그림	3-32>	공정재설계(세부 A) ·····	113
<그림	3-33>	재설계된 조사 구축 공정 흐름도(세부 B) ·····	115
<그림	3-34>	재설계된 전체 공정 업무흐름도	116
<그림	3-35>	조사지원시스템, 현장조사시스템 및 KTDB 웹서비스 연계 개념도…	120
<그림	3-36>	로그인	121
<그림	3-37>	이력관리 기능	122
<그림	3-38>	업무지원 초기화면	122
<그림	3-39>	조사현황	123
<그림	3-40>	자료등록	123
<그림	3-41>	조사현황 조회 화면	124
<그림	3-42>	조사업무 추가 화면	124
<그림	3-43>	작업파일 저장소 화면	125

요약

1. 과업의 배경 및 목적

가. 과업 배경

- 기존 교통주제도는 교통분석용 네트워크 구축 및 교통분야 연구를 위한 지리정보로 구축범위 및 대상이 한정되어 그 활용도가 낮다는 문제점이 있었음
- 교통주제도는 전국 도로망에 대한 지속적이고 주기적인 갱신을 수행하여 시계열적인 DB를 구축하고 있는 경쟁력 있는 지리정보DB이며 교통분석용 네트워크의 기초자료 로의 역할보다 각종 정보화 사업과 도로관련시스템에서의 활용도가 훨씬 높은 것으로 판단됨
- 교통주제도 중 도로망은 도로의 세밀도와 갱신주기의 단축만 해결할 수 있다면 공공 부문 뿌만 아니라 일반관련기업, 대국민 서비스도 가능한 필수자료임
- 이에 교통시설물 조사 및 교통주제도 구축공정을 단축하고 자동화하여 교통주제도의
 사용범위를 확대하고 활용성을 높일 수 있는 방안에 대하여 연구함
- 이는 일부 전문가에게 주로 활용되던 한계에서 벗어나 국민 전체를 대상으로 고품질 의 자료를 서비스 할 수 있는 방법을 연구하는 기회가 됨

나. 과업 목적

- 교통주제도는 매년 교통시설물 조사를 통해 갱신/구축되어 시계열적인 교통 관련 지 리정보 확보는 가능하였으나 활용도를 높이기 위한 다양한 분야와의 융합 연구가 필 요함
- 이에 교통주제도와 각 분야별 주제도(국토이용, 교통, 통계 등)를 융합하여 부가가치를 높이는 방법 및 사용대상, 범위를 확대하는 방안에 대하여 연구를 수행하고자 함
- 이와 함께 교통관련 시설물의 신설 및 변경시 즉각적인 자료수집, 조사 및 DB구축이 가능한 체계를 구축하는 방안을 연구하여 조사 및 구축 공정을 합리적이고 효과적으로 개선하여 더욱 다양하고 광범위한 교통주제도 구축 방안을 제시하고자 함

2. 교통주제도 활용성 제고방안 연구

가. 국내 NGIS 구축성과 조사

- 1) 국가GIS 사업 시행계획
 - 국가지리정보체계(NGIS)에서 생성되는 DB에 대한 현황을 조사하여 향후 교통주제도 와 연계・활용할 수 있는 기반을 마련하고자 함
 - 2009년도 국가GIS사업 시행계획은 <표 1>과 같음

<표 1> 2009년도 국가GIS사업 시행계획 총괄표1)

단위: 백만원, %

_							_		, ^	_	
_				2007년		200)8년	2009년	'08/'09	재원	국
구 분	부문	사 업 명	주관기관	계획 예산	집행 예산	계획 예산	집행 예산	계획 예산	증감액 (증△감)	조달 방안	비 비 중
		1. 기본지리정보 구축사업		1,225	1,225	1,225	414	1,125	△100	국고	100
		2. 국가기본도 제작사업		40,977	40,704	44,805	45,335	44,605	△200	국고	100
	기본	3. 해양기본도 제작사업	그트웨아버	320	311	360	310	400	90	국고	100
	지리 정보	4. 해안선조사 측량사업	국토해양부	2,432	2,432	1,600	1,567	2,000	400	국고	100
	부문	5. 국가기준점 관리사업		10,900	10,677	15,200	15,008	15,200	-	국고	100
		6. 공간영상 구축사업		2,452	2,452	2,455	2,150	2,655	200	국고	100
핵심 사업		7. 공간통계지식체계 구축사업	통계청	2,315	2,315	9,300	6,945	1,500	△7,800	국고	100
, 6		8. 지리정보 표준화 사업	국토해양부	140	134	140	155	140	-	국고	100
	표준화	9. 표준화 사업	국토해양부	150	150	280	280	800	520	국고	100
		10. GIS 국가표준 체계 학립	기술표준원	100	100	50	50	100	50	국고	100
	유통	11. 국가지리정보 유통체계 구축사업	국토해양부	1,700	1,700	1,521	1,363	712	△809	국고	100
	정책 및	12. 국가GIS 전문인력 양성사업	=======================================	700	700	600	600	1,990	1,390	국고	100
	제도	13. 국가GIS 지원연구 사업	국토해양부	800	800	800	800	500	△300	국고	100

^{1) 2009}년도 국가지리정보체계 시행계획, 국토해양부 국가지리정보체계추진위원회, 2009.1

<표 1> 2009년도 국가GIS사업 시행계획 총괄표(계속)

_					200)7년	2008년		2009년	'08/'09	재원	굴
구 분	부	문	사 업 명	주관기관	계획	집행	계획	집행	계획	증감액	조달	국비비
					예산	예산	예산	예산	예산	(증△감)	방안	중
			14. 국가공간정보 사업관리 시스템 구축사업	국토해양부	_	_	_	_	500	500	국고	100
			15. 국가공간정보체계 구축 사업	국토해양부, 행정안전부	407	407	26,000	26,000	25,000	△1,000	국고	100
			16. 3차원 국토공간정보 구축사업		4,090	4,090	4,590	4,590	13,100	8,510	국고	100
	주 응		17. 한국토지정보시스템(KLIS) 사업		5,956	5,956	6,520	6,060	5,174	△1,346	국고	100
	응 사		18. 도시계획정보체계 구축사업(UPIS)	국토해양부	-	-	2,973	-	5,300	2,327	국 고 / 지방비	62
			19. 국토공간계획지원체계(KOPSS) 구축		1,300	1,252	1,050	1,050	865	△185	국고	100
			20. GIS기반 건물통합정보 구축사업		242.5	242.5	-	-	300	300	국고	100
			21. 지능형국토정보기술혁신사업		29,500	29,500	15,908	15,908	24,958	9,050	국고	100
			22. 새주소 기반 표준 전자지도 DB 구축사업	행정안전부	1,650	1,650	2,134	2,134	2,160	26	국고	100
			23. 도로와 상하수도 전산화사업	국토해양부	30,000	30,000	22,000	22,000	22,000	_	국 고 / 지방비	18
		지	24. 국토건설지반정보 DB 구축사업		950	194	150	145	100	△50	국고	100
		시 하	25. 광산지리정보시스템 구축사업	지식경제부	1,474	1,474	1,335	1,318	1,180	△155	국고	100
			26. 국가광물자원지리정보망(KMRGIS) 구축 사업	지식경제부	195	195	180	180	200	20	국고/ 차입	50
			27. 항만지하시설물 GIS DB 구축사업	국토해양부	606	606	797	797	980	183	국고	100
		수	28. 지하수정보관리체계 구축사업	국토해양부	700	700	780	733	950	170	국고	100
		구 자 원	29. 농촌용수물관리 정보화사업	농림수산식 품부	700	700	759	759	613	△146	국고	100
			30. 하천지도 전산화사업	국토해양부	1,200	948	1,022	206	876	△146	국고	100
응용		문화 재	31. 문화재지리정보활용체계(GIS) 구축사업	문화재청	1,020	1,020	1,880	1,880	4,589	2,709	국고	100
사업			32. 자연환경종합 GIS-DB 구축사업	환경부	360	338	400	373	400	_	국고	100
			33. 국토환경성평가지도 유지·관리사업		353	353	353	353	317	△36	국고	100
		환경	34. 인공위성 영상자료를 이용한 중분류 토지 피복도 갱신		977	977	-	-	605	605	국고	100
	일반		35. 국가환경평가지원시스템 구축사업		-	-	_	_	4,283	4,283	국고	100
	응용		36. 개발제한구역 정보화사업	국토해양부	628	628	151	151	600	449	국고	100
	사업		37. 농지정보화사업	농림수산식 품부	2,865	2,865	2,187	656	1,867	△320	국고	100
		농업	38. 농촌어메니티 자원도 구축사업	トラコオシ	950	950	850	850	700	△150	국고	100
			39. GIS기반 농업환경정보시스템 구축사업	농촌진흥청	560	540	700	700	700	-	국고	100
			40. 산림지리정보시스템 구축		4,145	4,145	3,943	3,943	2,197	△1,746	국고	100
		산림	41. 국가공간정보체계 구축을 위한 산림입지 도 제작사업	산림청	-	-	-	_	3,236	3,236	국고	100
			42. 연안관리정보시스템 구축사업		857	830	1,048	1,036	974	△74	국고	100
			43. 전자해도 제작사업		450	408	490	450	700	210	국고	100
		해	44. 종합해양정보시스템(TOIS) 구축사업	국토해양부	1,180	1,161	1,405	485	2,073	668	국고	100
		양	45. 연안해역해저정보 조사사업	101	536	465	300	255	4,700	4,400	국고	100
			46. 연안해양정보실시간제공시스템 구축사업		464	446	400	240	200	△200	국고	100
			47. 해양안전심판 관리시스템사업 48. 다국어관광전자지도서비스	므청 케ㅇㅋ	_	_	120	_	505	385	국고 국고	100
		관광	48. 나국어판광선사시도서미스 49. 관광지식정보시스템 운영사업	문화체육관 광부	407	407	482	482	700 482	700	국고	100
		교통	50. 국가교통수요조사 및 DB 구축사업	оT	5,698	5,698	5,850	5,850	6,010	160	국고	100
		0	51. 국토정보센터 통합 및 운영사업	국토해양부	395	376	905	315	1,720	815	국고	100
		 기타	52. 국토해양재난정보체계사업	1-101	200	200	667	667	1,500	833	국고	100
			53. 영상정보시스템 유지관리사업	국토해양부	94	94	105	99	105	-	국고	100
									1			<u> </u>

2) 교통주제도와 교통분야 기본지리정보

ㅇ 교통주제도

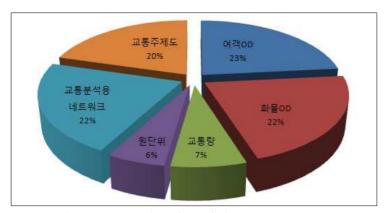
- 신설 및 변경도로에 대해 한국도로공사, 5개 지방국토관리청, 각 지자체를 통해 매년 자료를 수집하고, 이를 바탕으로 교통시설물 조사(현장조사)를 수행하며, 조사결과를 교통주제도(도로)에 반영하여 현재성과 신뢰성을 확보하여 각종 교통계획 및 교통공학에 사용될수 있도록 자료를 제공함
- 중앙부처·지자체 등을 포함한 모든 공공기관의 교통계획 및 정책수립 등의 추진시 필수 기초자료로 활용
 - ·국가기간교통망계획·중기교통시설투자계획 등 각종 교통계획
 - ·교통정책(교통수요관리, 도로운영, 교통시설투자 타당성 검토 등)
- 산업계·학계 및 연구원, 민간부문 사업자 등에 다양한 분석자료로 활용하도록 하고 일반국민에게 교통관련 자료제공 추진
 - ·산·학·연(교통수요분석·교통영향평가·교통투자평가 등 연구기초자료)
 - · 일반 국민(교통통계정보, 교통연구자료 등)

○ 교통분야 기본지리정보

- 국가기본지리정보구축 사업목적
 - ·국가지리정보체계(NGIS)의 가장 기본적인 데이터를 구축하여 다양한 사용자가 지 리정보구축에 활용할 수 있는 기초지리정보를 구축 및 제공하고자 함
 - · 각자의 필요성에 따라 다양한 방법으로 개별적 공간데이터를 구축하여 중복투자, 데이터간의 불일치 등이 발생함에 따라 지리정보의 효율적인 구축, 데이터간의 일 관성 유지 및 사용자 요구와 활용성을 높이고자 함
- 교통부문 지리정보 추진 경위
 - '03년 : 전국 단위의 교통분야 도로 기본지리정보 구축
 - '06년 : 도로(호남, 영남, 강원권) 지리정보 갱신, 철도 기본지리정보 신규 구축
 - · '07년 : 도로, 철도 지리정보 갱신(수도권, 충청 일부)
 - · '08년 : 도로, 철도 지리정보 갱신(충청, 전북, 대전, 광주, 대구, 부산, 울산)
 - '09년 : 도로, 철도 지리정보 갱신(경남, 전남, 서울, 인천)
- 교통부문의 지리정보 갱신은 1/5000 수정계획에 따라 2006년 까지는 5개 권역으로, 2007년 부터는 4개 권역으로 구분하여 연차적으로 수행하고 있음(광역도시권은 2개 (서울/인천, 대전이남) 권역으로 구분하여 갱신)

ㅇ 구축내역 비교

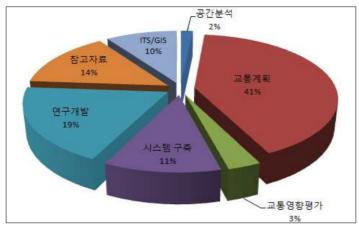
<표 2> 도로중심선 구축내역 비교


항목		도로중심선	비고		
구분	구축 대상 도로	도로중심선 취득방법	미끄		
교통주제도	2차로 이상의 포장도로 (입체램프는 차로수 무관)	- 관련기관의 준공도로현황 자료를 수집하고, 현장조사를 수행하여 조사자료를 교통주제도에 반영함	- 현지조사를 통한 도로중심선 추가 - 각종 문헌조사		
교통분야(도로) 기본지리정보	고속도로, 국도, 지방 도, 시·군도, 면리간 도로, 부지간 도로	도로경계선을 구축한 후 가상의 도로 중심선 추출(도로 폭의 이등분점을 연결)			

- 속성자료 구축부분

· 기본지리정보의 속성항목은 도로번호 외 4개의 항목으로 구성된 반면, 교통주제 도의 경우, 기본지리정보의 속성항목을 모두 포함하며 교통계획 및 교통분석용 네트워크 구축을 위하여 교통 전반에 대한 속성항목으로 구성되어 있음

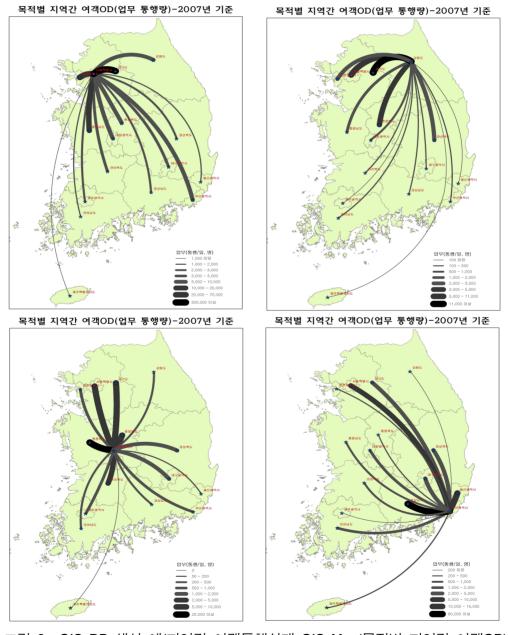
나. 교통주제도와 NGIS DB의 융합 및 활용성 제고


- 교통주제도 자료 활용 현황
 - 교통주제도는 국가교통DB센터에서 교통시설물 조사 자료를 바탕으로 구축하는 GIS Map으로서 사용자들은 국가교통DB센터 홈페이지(www.ktdb.go.kr)에서 KTDB 자료제공 절차를 통하여 자료를 취득 및 이용할 수가 있음
 - 따라서, 교통주제도 자료 활용 분석대상은 2009년 1월부터 2009년 12월까지 1년간의 국가교통DB(KTDB)로부터 공식적으로 자료를 제공받은 기관을 대상으로 함
 - KTDB에서 제공되는 자료는 여객 및 화물OD, 교통분석용 네트워크, 교통주제도, 교통량, 유발원단위 자료임
 - 지난 1년간의 KTDB 자료 제공 현황을 분석해본 결과 교통주제도는 전체의 20%로 서, 여객OD(23%), 화물OD(22%), 교통분석용 네트워크(22%)와 더불어 높은 비중을 차지하고 있음
 - 자료요청건수 115건, 자료별 제공건수 308건
 - ·자료별 제공건수는 요청건수별 각 제공자료 건수를 합한 것임

<그림 1> KTDB 자료제공 현황(2009.1 ~ 2009.12)

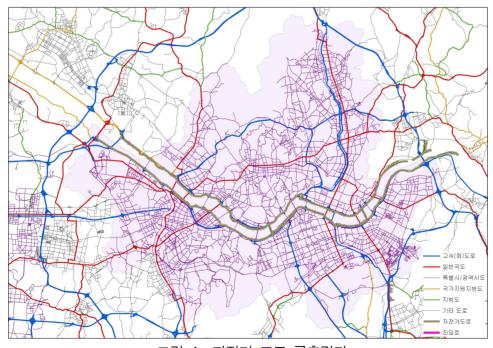
○ 교통주제도 활용결과 분석

- 교통주제도 제공 자료를 이용한 사용분야를 분석한 결과 교통계획에 41% 사용된 것 으로 가장 높게 나타남
- KTDB 제공 자료 중에서 높은 비율을 나타내는 것이 여객 및 화물OD 자료인데, 이 자료는 또한 교통분석용 네트워크 자료를 같이 이용해야만 함
- 따라서, 교통분석용 네트워크를 갱신 및 보완, 현행화하는 과정에서 현장조사를 바탕으로 구축된 교통주제도를 참고 및 활용한 것으로 나타남
 - ·교통주제도는 KTDB에서 제공되는 여객 및 화물OD, 교통분석용 네트워크와 현행시점이 동일함
 - · 한국도로공사, 지방국토관리청, 각 지자체로부터 해당 현행시점에 맞는 준공/개 통 도로 현황을 협조 받아서 현장조사 참고자료로 활용하고, 현장조사 자료를 바탕으로 교통주제도를 보완 및 갱신함
- 연구개발 및 공간분석은 주로 연구과제 수행시 기본도면 또는 공간분석을 위한 자료 로 활용함
- 시스템 구축 및 ITS/GIS 이용자는 시스템 구축 및 유지보수 또는 GIS를 이용한 연구 과제 수행시 활용함



<그림 2> 교통주제도를 이용한 사업분야

다. 교통주제도 사용대상 및 범위 확대


- 국가교통DB(KTDB) 자료와 교통주제도 연계방안 모색
 - 국가교통DB센터 홈페이지에서 서비스가 제공되고 있는 자료의 형태 및 내용을 파악·분석하고 GIS DB를 생성할 수 있는지 여부를 파악함
 - GIS DB 생성 가능 경우
 - ·총 통행량, 목적통행량, 수단통행량 등과 같이 대존별 속성값이 입력되어 있는 경우에는 위치정보(대존)가 존재하기 때문에 교통주제도 행정구역과 연계하여 GIS DB를 생성할 수 있음
 - ·목적별 지역간 여객OD, 수단별 지역간 여객OD 등 OD(기종점 통행량)의 경우에는 교통주제도 행정구역을 이용하여 센트로이드를 구축하고, 기점과 종점을 연결한 선으로 OD 레이어를 생성한 후 OD 레이어와 정리한 자료를 연계하여 GIS DB를 구축함
 - GIS DB 생성 불가능 경우
 - · 적재능력별 화물자동차 분석대수 및 비율(상업용, 비상업용), 1일 대당 적재능력별 적재 및 공차통행특성(상업용, 비상업용)은 지역구분 없이 적재능력(1톤이하, 1톤 초과~3톤 이하, 3톤 이상~8톤 이하, 8톤 초과~12톤 미만, 12톤 이상)별 속성값이 입력되어 있으므로, 교통주제도와 연계할 수 있는 위치적인 정보가 존재하지 않아서 GIS DB 생성이 불가능함

- 국가교통DB(KTDB) 제공 자료의 가공 및 GIS DB 생성
 - KTDB 자료의 GIS DB 생성 검토결과에 따라 교통주제도와 자료를 연계하여 GIS DB를 생성하여 교통주제도의 활용성을 제고할 수 있음
 - KTDB 자료가 지역별(대존별)로 구성되어 있는 경우에는 교통주제도의 행정경계 중 시/도 데이터를 기반으로 다양한 GIS DB를 생성함
 - KTDB 자료가 기종점별로 구성되어 있는 경우에는 교통주제도의 행정경계를 기반으로 구축한 센트로이드와 OD 레이어를 바탕으로 GIS DB를 생성함

<그림 3> GIS DB 생성 예(지역간 여객통행실태 GIS Map(목적별 지역간 여객OD))

- 교통주제도 활용 확대-자전거 도로 GIS DB 구축
 - 자전거 도로 GIS DB 설계
 - · 자전거 도로 링크에 대한 속성정보 구성은 자전거 도로 ID, 자전거 도로 유형, 행정구역ID 등임
 - · 자전거 도로 노드에 대한 속성정보 구성은 자전거도로 노드 ID, 자전거도로 노드 유형, 행정구역ID, 일반 도로망 접근 유무 등임
 - · 자전거 도로 진출입로 및 자전거 대여소 등의 자전거 시설물에 대한 속성정보 구성은 자전거 시설물ID, 자전거 시설물 유형, 명칭, 행정구역ID 등임
 - 자전거 도로 시범조사 및 DB 구축
 - · 자전거 도로 DB설계를 기반으로 서울시 한강주변 자전거 전용도로에 대한 시범 조사를 실시하고 이를 바탕으로 레벨 1 도로망과 연계한 서울시 자전거 도로 교 통주제도를 구축함
 - ·대상은 서울시 한강주변 자전거 전용도로, 진출입로 및 자전거 관련 시설물임
 - · 자전거를 이용하여 현장조사를 실시
 - ·자전거 도로, 진출입로, 자전거 대여소 등의 상세정보 및 위치정보 등을 확인 및 조사
 - ·자전거 전용도로의 경우 양방향을 동시에 조사하며, 자전거·보행자 겸용도로와 자전거·자동차 겸용도로에 대해서는 차선 우측 방향에 대해서 한쪽 방향씩 주 사를 수행

<그림 4> 자전거 도로 구축결과

3. 교통시설물 조사 및 교통주제도 구축 공정 개선 연구

가. 상시조사체계 구성 방안

1) 개요

- 기존 교통시설물 조사와 다른 특별한 체계가 아닌 기존 공정을 개선하여 효율성을 높 이고 교통주제도의 갱신주기를 단위작업별로 단축하는 것을 목표로 함
- 상시조사란 기존 1년 단위 조사 및 DB구축 공정을 1개월 또는 분기별로 수시로 진행 하여 자료의 최신성을 높이고 각 단계별로 교통주제도를 갱신하여 사용자에게 제공하 는 것을 의미함
- 유관기관 협조체계 구축 및 조사/구축 공정 개선 연구를 통해서 정립된 조사방안을 구체적으로 일정화하여 사업기간 동안 조사 및 구축 업무를 설계함

2) 상시조사체계(안)

- 상시조사의 주기는 1개월 혹은 1분기를 기준으로 하며, 각 기간에 적합한 조사일정을 수립하였음
- 조사주기는 1개월 혹은 1분기에 국한된 것이 아니라 기존의 조사를 수행함과 동시에 또다른 조사공정을 수행할 수 있도록 각 개별 조사단위로 운영하는 것을 원칙으로 함
- 각 주기별 상시조사 및 교통주제도 구축은 기간과 대상의 범위가 다른 것을 제외하고 는 동일한 공정으로 수행됨

<표 3> 1개월 단위 상시조사일정(안)

과업순서	공정내역	소요일수(일)	투입인력(명)
	조사 자료 수집 및 구축	3	2
1주차	조사대상별 조사일정 수립	1	1
	조사장비 및 차량 준비	1	1
 2주차	대상별 현장조사 수행	5	_
9スシ	교통시설물 조사결과 검수	1	1
3주차	조사결과를 반영한 교통주제도 갱신	4	2
 4주차	교통주제도 검수	2	1
4十个	교통주제도 배포버전 작성 및 갱신내역 공고	3	1

<표 4> 1분기 단위 상시조사일정(안)

 일정순서	추진내역	소요일수	투입인력
1	조사 자료 수집 및 구축	7	2
2	조사대상별 조사일정 수립	1	1
3	조사장비 및 차량 준비	3	1
4	대상별 현장조사 수행	25	-
5	교통시설물 조사결과 검수	4	1
6	조사결과를 반영한 교통주제도 갱신	20	-
7	교통주제도 검수	3	2
8	교통주제도 배포버전 작성 및 갱신내역 게시	3	1

주: 1) 현장조사팀은 조사대상의 개수 및 연장, 그리고 지역별 분포에 따라 투입함

나. 유관기관 협조체계 구축 방안

- 교통시설물 조사의 시작은 조사대상(도로, 철도, 교통시설물)에 대한 원시자료 수집 에서 시작함
- 전국의 모든 도로망을 매년 주기적으로 조사할 수 없는 상황에 의해 매년 신설 및 변 경되는 교통시설물에 대한 조사를 조사 참조자료를 바탕으로 수행함
- 이중 각 시설물의 건설 및 관리기관을 통해 협조되는 참고자료는 그 정확도가 높고 주기적으로 자료수집이 가능하다는 장점이 있음
- 이외에도 관련기관의 정보화 사업을 통해 생성되는 각종 자료를 조사 및 DB구축의 기초자료로 활용하여 효율적이고 생산적인 교통주제도 구축이 가능함
- 기존의 자료협조는 관행적으로 수행되었던 지금까지의 공정을 답습해왔으나, 좀 더 체계적으로 각 기관별 구축자료를 정리하고 자료의 생성 및 관리 등 공정을 분석하여 효율적이고 시스템적으로 자료수집이 가능한 방안을 연구하고자 함
- 참조 가능한 유관기관 생산자료의 종류, 생성에서 관리까지 공정 및 협조방안을 파악 하여 교통시설물 조사에 적극적으로 활용할 수 있는 방안을 제시함

²⁾ 교통주제도 갱신은 조사물량 및 조사결과에 따라 적절하게 투입함

- 1) 교통시설물 조사 관련 유관기관 및 관련자료 검토
 - 기존의 도로 및 철도, 교통시설물에 대한 조사원시자료 확보를 위한 자료협조는 주로 공문을 통한 협조 방식으로 일관되어 왔음
 - 협조기관에서 어떠한 형태의 자료를 수집하고 보관하고 있는지에 대한 정보가 부족하 여 협조체계를 효율적으로 구축할 수 없었음
 - 대표적인 사례로 매년 수집되고 있는 준공도로 현황의 경우, 각 협조기관의 원시자료 를 그대로 활용하는 것이 아닌 요청양식에 따른 새로운 자료의 작성을 기초로 하고 있기 때문에 담당자들에게 효율적으로 필요한 자료를 수집하는데 어려움이 있음
 - 이에 기존의 자료협조 공정의 문제점을 파악하고 각 기관별 보유자료를 확인하여 효 율적인 자료수집이 가능한 체계를 제시하고자 함
 - 교통시설물은 관리와 DB구축이라는 관점에서 자료를 분류할 수 있고 관리와 DB구축 기관이 동일하지 않을 수 있음
 - 교통주제도 구축에 활용 가능한 자료를 관리기관과 DB구축기관으로 분리하여 정리하 여 참조함
 - 교통시설물은 크게 다음과 같이 분류할 수 있음
 - 도로(도로중심선, 도로교차점, 회전제한)
 - 철도(철도중심선, 철도교차점)
 - 도로시설물(교량, 터널, 고가차도, 지하차도 등)
- 2) 활용 가능한 유관기관 자료 조사
 - 기존에 활용하던 협조기관별 자료 이외에 교통시설물 조사 및 교통주제도 구축에 참 조 가능한 자료 및 정보화시스템을 조사하고 검토함
 - ㅇ 조사의 주요 관점은 자료의 갱신주기 및 구축범위임
 - 이와 함께 자료의 협조체계를 유기적으로 구성할 수 있는지 가능성에 대한 검토를 수 행함
 - 도로관리기관 이외에 교통주제도 구축결과를 활용하고 조사자료로 활용가능한 정보화 시스템을 중심으로 조사를 수행하였음

3) 기관별 자료협조 방안 제시

- 각 기관별로 구축 및 관리되고 있는 자료를 더욱 효율적으로 수집하여 교통시설물 조 사에 반영하기 위해서는 자료의 협조, 협조자료 가공에 관한 방안이 필요함
- 구분되는 자료형태에 따라 자료를 수집하고 가공하는 방안을 제시하고 향후 조사지원 체계와 연계할 수 있는 방법을 모색함

① 준공도로 협조자료 형태

- 가장 조사 대상 도로의 현황을 파악하기 용이한 형태의 자료임
- 별도의 조서 작성 공정이 각 기관별로 존재하지는 않지만 일반적인 통계자료(도로현 황조서 등)를 작성하면서 추가적으로 작성이 가능하도록 구성되어 있음
- 기존의 자료협조는 도면과 대상도로 리스트를 작성하여 협조 받고 이를 다시 자료화 하는 과정을 거침
- KTDB 홈페이지 및 이메일 응답시스템을 도입하여 신속하고 효율적으로 자료협조가 가능한 방안을 제시하고자 함

② 지리정보 및 DB구축 자료 협조 형태

- ITS 표준노드링크, 새주소 도로망, 그리고 NGIS 수치지도와 같이 일정시기를 기준으로 구축된 최종 지리정보 및 DB를 협조 받는 경우를 의미함
- 준공도로 형태와 같이 단일 조사 대상별로 공정을 수행할 수 없으며 교통주제도와 협 조자료를 비교하여 조사대상을 산출하는 방법을 활용해야 함
- 기존 교통주제도와 협조자료를 공간적으로 분석하여 대상도로를 추출하고 이를 각 객체로 구분하여 조사대상으로 리스트화 하는 별도의 공정을 시스템에서 구현하여 활용할 수 있음
- 추출한 조사대상을 지역별(시군구) 또는 도로등급별로 구분하고 연장을 산출하여 조 사대상으로 자료화하는 시스템을 검토함

③ 시스템 연계 형태

- 교통시설물 조사에서 필요한 자료는 주로 공간정보보다는 도로 및 철도 등 교통시설 물의 신설 및 갱신에 관련된 이력자료임
- 연계 가능성을 제시한 도로통합관리시스템(HMS) 및 도로표지관리시스템은 도로의 신설, 변경, 갱신 이력이 비교적 주기적으로 갱신되는 시스템임
- 각 시스템의 이력관리공정에 KTDB로 간단한 입력정보를 전달할 수 있는 공정을 추가 하면 수월하게 이력정보를 취득할 수 있음
- 주기적으로 또는 상시적으로 구축된 교통주제도를 갱신주기마다 각 시스템에 제공하여 자료의 입력 및 반영, 그리고 활용이 순환되도록 한다면 각 시스템의 효율성이 높아질 것으로 판단됨

4) 교통시설물 조사 및 교통주제도 구축 결과 제공 방안 마련

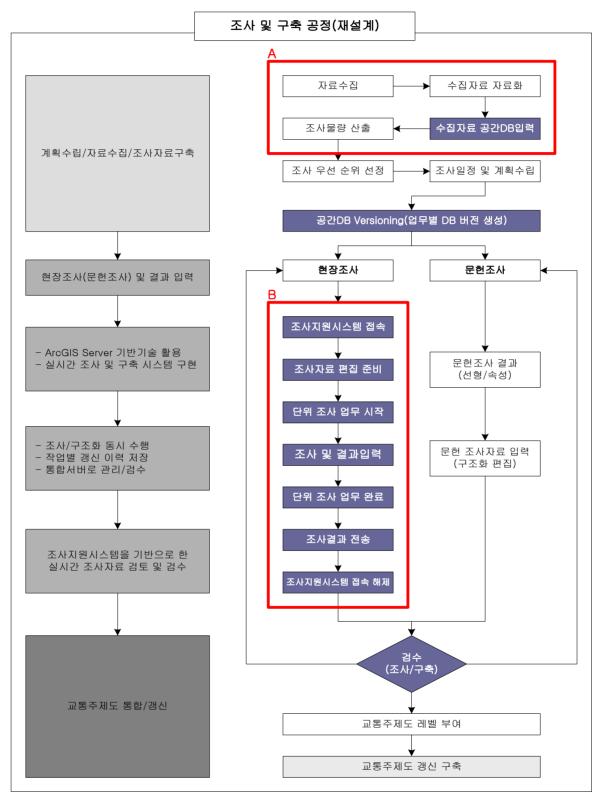
- 교통주제도는 매년 조사 및 갱신을 통해서 도로 및 철도, 교통관련시설물의 지리정보 DB를 구축한 것으로 그 활용가능성이 매우 높음
- 1년 단위 갱신이라는 주기의 장기성과 이전년도 12월을 기준으로 작성하여 배포시점 과 기준시점이 1년 이상 차이가 발생하는 한계가 있었음
- 레벨 2 수준의 도로망으로 공간적 범위가 한정되어 비교적 세밀한 도로망이 포함되지 않은 것도 활용성이 떨어지는 요인이 되었음
- 2009년도 국가교통DB구축사업을 통해 교통DB에 대한 접근성을 강화하고 일반사용자 에 대한 자료배포가 가능해짐
- 각 기관별 상시조사를 위한 협조체계 구축이 완료된다면 주기적(1개월, 1분기 등)으로 조사를 수행하여 교통주제도를 구축, 즉각적으로 배포하는 것이 가능해짐
- 교통주제도를 주로 활용하는 기관을 선정하여 교통주제도 갱신과 함께 자동으로 자료 를 전송하고 이를 사용하도록 하면 교통주제도 사용에 대한 만족도가 높아질 것으로 판단됨
- 일반사용자들이 지리정보 툴이 없이도 교통주제도를 활용할 수 있도록 GeoPDF 파일을 생성하여 홈페이지를 통해 배포하는 방안을 검토함
- 최근 사용자가 급격히 증가하고 있는 스마트폰 사용자를 위한 어플리케이션을 제작하여 국가교통DB에서 구축하고 있는 각종 DB와 교통주제도를 연계하여 활용할 수 있는 방안을 검토함

다. 조사 및 구축공정 개선 방안

- 교통시설물 조사 및 교통주제도 구축은 조사와 구축을 별도로 수행하는 절차로 진행 되어 왔으나 시간 및 예산의 제약은 다양한 교통시설물의 DB화에 장애가 되고 있음
- 조사 및 구축에 소요되는 시간으로 인해 교통주제도는 연간 1회 갱신을 수행하고 있으나 이는 자료의 효율적인 활용에 제약사항으로 작용하고 있음
- 기존의 도로망 이외에 신호등, 횡단보도와 같은 추가적인 세부 교통시설물에 대한 조 사를 수행하기 위해서는 개선된 조사기법이 절실한 상황임
- 이는 조사기법만을 개선하는 것이 아니라 조사와 DB의 구축/갱신이 실시간 또는 효율적으로 진행될 수 있는 방안을 마련하여 조사 및 구축공정을 효율화하고 시간 및 예산을 단축하여 지금까지 수행할 수 없었던 다양한 시설물에 대한 조사를 수행할 수 있도록 하는 것에 가장 큰 목적이 있음
- 조사시스템의 개선과 함께 조사 및 구축업무를 절차적으로 진행할 수 있는 조사/구축 지원시스템을 웹기반으로 구축하여 조사 및 구축업무를 관리하고 검증하는 수단으로 활용함과 동시에 결과물을 대외적으로 제공할 수 있는 기반을 마련하고자 함
- 개선된 공정을 반영한 조사지원시스템 설계 및 시범구축을 통해서 조사의 시작부터 DB의 최종구축까지 전체공정을 관리할 수 있는 대안을 제시하고 향후 이를 기반으로 발전된 시스템을 구축하는데 기틀을 마련하고자 함
- 조사업무별로 적용 가능한 다양한 조사시스템에 대한 연구를 수행하여 기존 노트북PC 이외에 UMPC, PDA, PMP, 스마트폰을 활용한 조사시스템을 구상하고, 단말기와 조사업무별 특성을 고려하여 조사시스템을 개선하고 확장할 수 있는 방안을 마련함
- 향후 교통주제도 구축 부문에 적용하여 검증된 조사/구축 지원시스템은 교통조사 및 관련업무 전반에 효율적으로 사용할 수 있도록 적용하고, 이를 통해 국가교통DB구축 사업 전체 업무공정 및 관련성과물을 통합하여 관리할 수 있도록 하는 체계를 구축하 는 것을 최종목표로 함
- 1) 기존 조사/구축 공정 분석 및 문제점 도출
 - 2008년 사업까지 교통주제도 중 도로망은 2차선 이상 포장도로에 대해서만 조사를 수
 행하였으며 이는 교통주제도 도로망 레벨 2에 해당되는 도로임

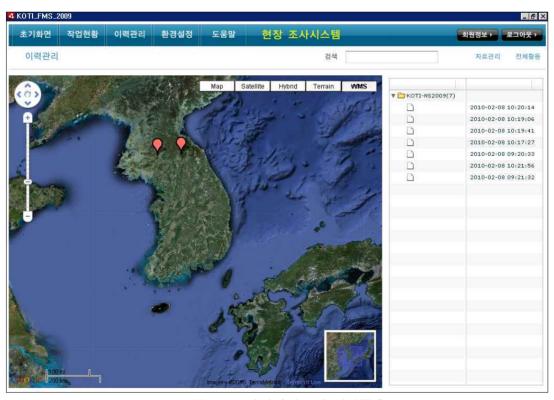
○ 최근 복잡한 도심 및 다양한 교통수단의 표현 및 분석을 위해 복합교통망을 구현하고 도로망의 세밀도로 인해 활용성이 떨어지는 교통주제도를 보완하기 위해 레벨 1 도로 망 조사사업을 2009년부터 단계적으로 시행할 계획임

<표 5> 조사 및 구축 공정별 현황 정리


	 목	개선 필요 사항					
		- 통행속도가 빠름					
	장점	- 기존 도로망 조사에 효율적임					
		- 계절 및 기상상태에 의한 영향이 적음					
차량조사		- 조사항목이 세분화 되면 조사누락 및 오류발생 확률이 높음					
	단점	- 차량운용에 의한 부대비용이 많이 발생함					
		- 도로망의 세밀도 및 교통상황에 조사효율이 의존적임					
		- 조사자 이외에 운전자가 반드시 필요함					
		- 공정별 결과물 검수에 시간 및 비용 소요					
조사	검수	- 검수를 위한 자료화에 시간 및 비용 소요					
		- 조사 및 검수시기의 격차로 인해 효율적인 조사 및 검수 불가능					
		- 조사결과의 활용을 위해 별도의 작업이 필요함					
조사 결고	· 자료화	- 조사 및 DB구축시 인력의 능력차가 결과에 영향을 미침					
		- 조사결과 취합 및 자료화에 많은 시간이 소요됨					
		- 부피가 크고 상시전원이 필요함					
	 조사 S/W	- 조사자료의 관리 및 저장에 시간비용이 많이 소요됨					
	소사 3/00	- 세밀한 도로속성조사에 한계가 있음					
조사		- 도로망 조사에 특화되어 기타 시설물 조사에 활용도 떨어짐					
시스템		- 종이도면으로 보관에 어려움					
	조사원장	- 도면의 분실 등에 취약함					
		- 조사 전/후 자료화에 시간이 많이 소요됨					
	조사공정	- 조사/구축공정이 순차적으로 진행되어 DB구축 및 갱신 기간이 길어짐					
	단위도엽	- NGIS 수치지도 반영에 효과적인 방법임					
	분할 및	- 도엽분할 및 병합에 많은 시간과 노력이 소요됨					
	병합	- 인접도엽간 노드, 링크를 연계 편집이 필요하며 오류발생 확률이 높음					
	입력	- 입력과 변환에서 완벽한 호환이 보장되지 않음					
	및 최종	- 형식변환으로 자료손실 및 오류가 발생함					
	자료형식	- 형식변환에 많은 시간이 소요됨					
교통주제도	변환	- 각 공정 간의 원활한 데이터 연계를 위해 형식 통일이 필요함					
구축		- 조사자와 DB입력자가 동일하지 않음					
	DB입력	- 동일한 지점의 동일한 이슈에 대해 서로 다른 의견을 가짐					
	작업	- 조사자가 현장상황을 기억하지 못할 경우, 입력 불가함					
		- 조사자/입력자에 대한 교육을 수행해도 작업평준화가 힘듬					
	 교통주제도	- 단위도엽/공정 단위 논리오류검수로 많은 시간이 소요됨					
	검수	- 연계/참조하는 테이블 및 필드가 존재하기 때문에 하나의 입력오류가					
		실제로는 다수의 오류로 표출됨					

- 교통주제도 레벨 1 도로망에 해당하는 도로는 주로 기존의 도로망에서 제외되었던 도 심의 이면도로, 사유지 도로 등 실제로 통행에 많은 영향을 주는 도로가 포함되어 있 으며 교통분야 이외에도 다양한 정보화 사업에서 그 사용요구가 증가하고 있음
- 교통시설물 중 교통망(도로, 철도)을 제외한 주요 시설물을 조사하기 위해서는 조사 에 투입되는 시간 및 예산, 인력을 효율적으로 활용할 수 있는 기법이 필요함
- 2) 조사/구축 공정 재설계를 위한 기술자료 수집 및 검토
 - 기존의 조사/구축 공정을 개선하려면 재설계된 공정에 적합한 지리정보 솔루션을 적 용해야 함
 - 기존에 활용되던 지리정보 솔루션은 ESRI 사의 ArcGIS 제품군으로 지리정보 구축 및 저장, 관리 그리고 웹 서비스 등 업무 전체에 대한 통합된 기능을 제공하고 있음
 - 전체적인 기능을 제공하고는 있지만 각 단위업무별로 활용되고 있어 그 효율성이 떨어지는 문제점이 있음
 - 이런 문제점을 공정개선을 통해 개선하고 사용자의 작업환경에 적합하도록 재구성하 는 과정이 필요함
 - 이를 위해 최근에 출시된 ArcGIS Server와 ArcPad 제품에 대한 검토를 수행하고 이를 공정개선에 반영할 수 있는 방안을 모색함
 - 최근 다양한 형태로 출시되고 있는 휴대형 단말기들의 특성 및 성능을 검토하여 현장 조사시스템을 다양화하고 개선하는데 활용하고자 함

3) 조사/구축 공정 재설계


- 조사/구축 공정 재설계의 주요한 고려요소는 크게 두가지로 구분됨
 - 조사수단 및 S/W의 문제점 개선
 - 조사 및 구축 공정의 개선
- 이중 조사수단 및 S/W의 문제점은 조사 및 구축 공정의 개선내용에 알맞도록 각 조 사이동수단 및 조사S/W를 적용하여 최적의 방안을 찾는 것이 필요함
- 조사 및 구축 공정의 문제점은 단위업무별 공정의 재설계를 통해 효율적인 방안을 도출할 수 있음

○ 재설계된 조사 및 구축 공정은 2개의 세부 공정으로 분리하여 설계되었음

<그림 5> 재설계된 전체 공정 업무흐름도

- 4) 조사지원시스템 설계 및 시범구축
 - 조사지원시스템이란 조사 및 공간DB 구축을 위한 일련의 업무를 처리할 수 있는 기 능을 포함하는 관리시스템으로 정의함
 - 조사지원시스템의 기능은 크게 다음과 같이 분류함
 - 조사자료 및 업무 관리시스템
 - 조사업무 지원시스템
 - 조사결과의 저장, 표출(리포트), 통계출력 시스템
 - 이와 함께 조사지원시스템은 조사업무의 기본활용시스템으로 현장조사시스템과 조사 결과 구축된 교통주제도를 활용하는 웹GIS 시스템과 연계되어야 함
 - 조사/구축 공정 재설계에 적합한 조사지원시스템을 시범적으로 구축하여 활용성을 검 토하고 향후 전체 구축의 가능성을 제시함
 - 설계된 기능 전체를 구현하기 보다는 기본적인 조사/구축 공정 진행 기능에 초점을
 맞추어 구현함

<그림 6> 조사지원시스템 시범구축

제1장 과업의 개요

제1절 과업의 배경 및 목적

제2절 과업의 내용 및 범위

제1장 과업의 개요

제1절 과업의 배경 및 목적

1. 과업의 배경

- 기존 교통주제도는 교통분석용 네트워크 구축 및 교통분야 연구를 위한 지리정보로 구축범위 및 대상이 한정되어 그 활용도가 낮다는 문제점이 있었음
- 교통주제도는 전국 도로망에 대한 지속적이고 주기적인 갱신을 수행하여 시계열적인 DB를 구축하고 있는 경쟁력 있는 지리정보DB이며 교통분석용 네트워크의 기초자료 로의 역할보다 각종 정보화 사업과 도로관련시스템에서의 활용도가 훨씬 높은 것으로 판단됨
- 교통주제도 중 도로망은 도로의 세밀도와 갱신주기의 단축만 해결할 수 있다면 공공 부문 뿐만 아니라 일반관련기업, 대국민 서비스도 가능한 필수자료임
- 이에 교통시설물 조사 및 교통주제도 구축공정을 단축하고 자동화하여 교통주제도의 사용범위를 확대하고 활용성을 높일 수 있는 방안에 대하여 연구함
- 이는 일부 전문가에게 주로 활용되던 한계에서 벗어나 국민 전체를 대상으로 고품질 의 자료를 서비스 할 수 있는 방법을 연구하는 기회가 됨

2. 과업의 목적

- 교통주제도는 매년 교통시설물 조사를 통해 갱신/구축되어 시계열적인 교통 관련 지 리정보 확보는 가능하였으나 활용도를 높이기 위한 다양한 분야와의 융합 연구가 필 요함
- 이에 교통주제도와 각 분야별 주제도(국토이용, 교통, 통계 등)를 융합하여 부가가치를 높이는 방법 및 사용대상, 범위를 확대하는 방안에 대하여 연구를 수행하고자 함
- 이와 함께 교통관련 시설물의 신설 및 변경시 즉각적인 자료수집, 조사 및 DB구축이 가능한 체계를 구축하는 방안을 연구하여 조사 및 구축 공정을 합리적이고 효과적으로 개선하여 더욱 다양하고 광범위한 교통주제도 구축 방안을 제시하고자 함

제2절 과업의 내용 및 범위

1. 교통주제도 활용성 제고방안 연구

- 국내 NGIS DB 구축성과 조사
 - 국내 공공기관에서 생산하고 있는 지리정보의 종류와 자료구조에 대해 조사를 수행 함
 - 조사자료와 교통주제도의 자료구조 및 서비스 형태 등의 비교・검토
- 교통주제도와 NGIS DB의 융합 및 활용성 제고 연구
 - 교통주제도의 자료 제공처를 파악하여 활용사례 조사
 - 교통주제도를 활용한 NGIS분야별 지리정보와 교통주제도가 융합할 수 있는 방안 연구
- 교통주제도 사용대상 및 범위 확대
 - KTDB에서 제공되는 자료와 교통주제도의 연계방안 모색
 - 교통주제도와 자료의 연계방안 강구 및 새로운 GIS Map 생성
 - 사회경제지표자료와 교통주제도를 연계하여 새로운 GIS Map 생성
 - 레벨 1 도로망과 연계한 서울시 한강변 자전거 전용도로 레이어 구축

2. 교통시설물 조사 및 교통주제도 구축 공정개선 연구

- 상시조사체계 구성 방안 연구
 - 기존 1년 단위로 수행되는 교통시설물 조사 공정을 상시로 수행할 수 있도록 개선하는 방안을 연구함
 - 조사를 위한 원시자료 취득, 조사팀 운영, 조사결과 자료화 등 조사공정 일체를 공 정 개선 방안 연구를 통해 단축시키고 이를 시범적으로 운영함
 - 조사를 위해 반드시 필요한 준공도로 등의 원시자료를 도로 및 각종 시설물의 완공 에 맞추어 수집 가능한 체계에 대해 연구를 수행하고 이를 체계화 함
 - 상시조사를 위한 조사공정 운영방안 및 기준을 제시함

- 유관기관 협조체계 구축 방안 연구
 - 교통시설물 조사 관련 유관기관 및 관련 생산물(자료, DB) 검토
 - 기관별 자료 협조 방안 제시
 - 교통시설물 조사 및 교통주제도 구축 결과 제공 방안 마련
- 조사/구축 공정 개선 방안 연구
 - 조사/구축 공정 개선
 - 개선된 공정을 반영한 조사지원시스템 설계 및 시범구축
 - 조사시스템 확장 및 개선 연구

제2장 교통주제도 활용성 제고방안 연구

제1절 국내 NGIS DB 구축성과 조사

제2절 교통주제도와 NGIS DB의 융합 및 활용성 제고

제3절 교통주제도 사용대상 및 범위 확대

제2장 교통주제도 활용성 제고방안 연구

제1절 국내 NGIS DB 구축성과 조사

1. 개요

• 국가지리정보체계(NGIS)에서 생성되는 DB에 대한 현황을 조사하여 향후 교통주제도 와 연계・활용할 수 있는 기반을 마련하고자 함

2. 국가GIS사업 시행계획

○ 2009년도 국가GIS사업 시행계획은 <표 2-1>과 같음

<표 2-1> 2009년도 국가GIS사업 시행계획 총괄표¹⁾

단위: 백만원, %

구분	부문	사 업 명	주관기관	2007년		2008년		2009년	'08/'09	재원	국
				계획 예산	집행 예산	계획 예산	집행 예산	계획 예산	증감액 (증△감)	조달 방안	비 비 중
	기본 지리 정보 부문	1. 기본지리정보 구축사업	- 국토해양부	1,225	1,225	1,225	414	1,125	△100	국고	100
		2. 국가기본도 제작사업		40,977	40,704	44,805	45,335	44,605	△200	국고	100
		3. 해양기본도 제작사업		320	311	360	310	400	90	국고	100
		4. 해안선조사 측량사업		2,432	2,432	1,600	1,567	2,000	400	국고	100
		5. 국가기준점 관리사업		10,900	10,677	15,200	15,008	15,200	_	국고	100
		6. 공간영상 구축사업		2,452	2,452	2,455	2,150	2,655	200	국고	100
핵심 사업		7. 공간통계지식체계 구축사업	통계청	2,315	2,315	9,300	6,945	1,500	△7,800	국고	100
	표준화	8. 지리정보 표준화 사업	국토해양부	140	134	140	155	140	_	국고	100
		9. 표준화 사업	국토해양부	150	150	280	280	800	520	국고	100
		10. GIS 국가표준 체계 학립	기술표준원	100	100	50	50	100	50	국고	100
	유통	11. 국가지리정보 유통체계 구축사업	국토해양부	1,700	1,700	1,521	1,363	712	△809	국고	100
	정책 및 제도	12. 국가GIS 전문인력 양성사업	국토해양부	700	700	600	600	1,990	1,390	국고	100
		13. 국가GIS 지원연구 사업		800	800	800	800	500	△300	국고	100

^{1) 2009}년도 국가지리정보체계 시행계획, 국토해양부 국가지리정보체계추진위원회, 2009.1

<표 2-1> 2009년도 국가GIS사업 시행계획 총괄표(계속)

단위: 백만원, %

Ī								근거, 흑근편, /0				
_				주관기관	2007년		2008년		2009년	'08/'09	재원	
구 분	부	문	사 업 명		계획 예산	집행 예산	계획 예산	집행 예산	계획 예산	증감액 (증△감)	조달 방안	국비비중
			14. 국가공간정보 사업관리 시스템 구축사업	국토해양부	- 에 <u>만</u>	-	- 에 <u>만</u>	-	500	500	국고	100
			 15. 국가공간정보체계 구축 사업	국토해양부,	407	407	26,000	26,000	25,000	△1,000	국고	100
			16. 3차원 국토공간정보 구축사업	행정안전부	4,090	4,090	4,590	4,590	13,100	8,510	국고	100
	주	요	17. 한국토지정보시스템(KLIS) 사업	-	5,956	5,956	6,520	6,060	5,174	△1,346	국고	100
	응	용	11. 선목모자정포자드指(MLIS) 자苷	-	3,330	3,330	0,320	0,000	3,174	△1,540	국고/	100
	사	업	18. 도시계획정보체계 구축사업(UPIS)	국토해양부	-	-	2,973	-	5,300	2,327	지방비	62
			19. 국토공간계획지원체계(KOPSS) 구축		1,300	1,252	1,050	1,050	865	△185	국고	100
			20. GIS기반 건물통합정보 구축사업		242.5	242.5	-	-	300	300	국고	100
			21. 지능형국토정보기술혁신사업		29,500	29,500	15,908	15,908	24,958	9,050	국고	100
			22. 새주소 기반 표준 전자지도 DB 구축사업	행정안전부	1,650	1,650	2,134	2,134	2,160	26	국고	100
			23. 도로와 상하수도 전산화사업	국토해양부	30,000	30,000	22,000	22,000	22,000	_	국 고 / 지방비	18
			24. 국토건설지반정보 DB 구축사업		950	194	150	145	100	△50	국고	100
		지	25. 광산지리정보시스템 구축사업	지식경제부	1,474	1,474	1,335	1,318	1,180	△155	국고	100
		하	26. 국가광물자원지리정보망(KMRGIS) 구축 사업	지식경제부	195	195	180	180	200	20	국고/ 차입	50
			27. 항만지하시설물 GIS DB 구축사업	국토해양부	606	606	797	797	980	183	국고	100
			28. 지하수정보관리체계 구축사업	국토해양부	700	700	780	733	950	170	국고	100
		수 자	29. 농촌용수물관리 정보화사업	농림수산식 품부	700	700	759	759	613	△146	국고	100
		원	30. 하천지도 전산화사업	국토해양부	1,200	948	1,022	206	876	△146	국고	100
응용		문화 재	31. 문화재지리정보활용체계(GIS) 구축사업	문화재청	1,020	1,020	1,880	1,880	4,589	2,709	국고	100
사업		환경	32. 자연환경종합 GIS-DB 구축사업	- 환경부	360	338	400	373	400	-	국고	100
			33. 국토환경성평가지도 유지·관리사업		353	353	353	353	317	△36	국고	100
			34 이곳위선 영산자료를 이용하 주부류 투지		977	977	_	_	605	605	국고	100
			의 기술도 경신 35. 국가환경평가지원시스템 구축사업	-	_	_	_	_	4,283	4,283	국고	100
	일반			그드레아버					*	<u> </u>	,	+-
	응용		36. 개발제한구역 정보화사업	국토해양부 농림수산식	628	628	151	151	600	449	국고	100
	사업	농업	37. 농지정보화사업	품부	2,865	2,865	2,187	656	1,867	△320	국고	100
			38. 농촌어메니티 자원도 구축사업	노츠지하처	950	950	850	850	700	△150	국고	100
			39. GIS기반 농업환경정보시스템 구축사업	· 농촌진흥청	560	540	700	700	700	-	국고	100
		산림	40. 산림지리정보시스템 구축		4,145	4,145	3,943	3,943	2,197	△1,746	국고	100
			41. 국가공간정보체계 구축을 위한 산림입지 도 제작사업	- 산림청	-	-	-	-	3,236	3,236	국고	100
			42. 연안관리정보시스템 구축사업		857	830	1,048	1,036	974	△74	국고	100
			43. 전자해도 제작사업		450	408	490	450	700	210	국고	100
		해	44. 종합해양정보시스템(TOIS) 구축사업	- - 국토해양부 -	1,180	1,161	1,405	485	2,073	668	국고	100
		양 관광	45. 연안해역해저정보 조사사업		536	465	300	255	4,700	4,400	국고	100
			46. 연안해양정보실시간제공시스템 구축사업		464	446	400	240	200	△200	국고	100
			47. 해양안전심판 관리시스템사업		-	-	120	-	505	385	국고	100
			48. 다국어관광전자지도서비스	문화체육관	-	-	-	-	700	700	국고	100
			49. 관광지식정보시스템 운영사업	광부	407	407	482	482	482	-	국고	100
		교통	50. 국가교통수요조사 및 DB 구축사업		5,698	5,698	5,850	5,850	6,010	160	국고	100
			51. 국토정보센터 통합 및 운영사업	국토해양부	395	376	905	315	1,720	815	국고	100
		기타	52. 국토해양재난정보체계사업		200	200	667	667	1,500	833	국고	100
				53. 영상정보시스템 유지관리사업	국토해양부	94	94	105	99	105	-	국고

3. 국가GIS 사업별 내용

가. 기본지리정보 부문

- 1) 기본지리정보 구축사업
 - 목적 : 국가공간정보체계의 가장 기본이 되는 정보로서 다양한 수요에 맞춰 활용할 수 있는 기반이 되는 공간정보 구축 및 제공
 - 추진근거 : NGIS 법률 제14조
 - 전담부서 : 국토지리정보원 지리정보과
 - 구축DB : 교통(도로, 철도)분야, 수자원(하천)분야, 시설물(건물) 분야 기본지리정보 구축 및 수정
 - 갱신방법 : 현지조사 및 보완측량, 관련기관의 자료수집을 통하여 1/5,000 수치지도 수정계획과 연계하여 수정 추진
 - 제공여부 : 유상판매

2) 국가기본도 제작사업

- 목적 : 국토기본계획 수립, 도로건설 등 각종 SOC 사업의 원활한 추진을 지원하기 위하여 변화하는 국토에 대하여 국가기본도를 신속하게 수정·갱신함으로서 국토정보 인프라 확립
- 추진근거 : 측량법 제26조, 국가지리정보체계의 구축 및 활용 등에 관한 법률 제5조
 및 제14조
- 구축DB : 1/1,000 수치지도, 1/5,000 수치지도, 접경지역, 접근불능지역 제작 및 수정
- ㅇ 갱신방법
 - 1/5,000 수치지도 : 지도 수정·갱신 추진계획에 따름(광역도시 : 2년, 일반지역 : 4년, 기타지역 : 준공도면 등을 활용하여 수시 수정)
 - 1/1,000 수치지도 : 시 단위 수요조사를 통하여 시급지역부터 제작
 - 접근불능지역 : 2~3m급 위성영상을 활용하여 1/25,000 축척의 지리정보 구축
- 제공여부 : 유상 판매

3) 해양기본도 제작사업

ㅇ 목적

- 관할해역 항만 및 연안을 대상으로 해양GIS수치지도를 제작하여 해양지리정보를 구축하고, 항만 및 해양관련 기관에 제작도면 및 구축정보를 제공하여 지도기반의 국가 해양 정책지원 및 해양 GIS기반을 확충
- 해양지도기반을 조기에 확충하기 위해 항만기본도, 연안기본도, 어항기본도와 같은 해양기본도 및 주제도를 제작하여 해양정보공간시스템에 제공하고, 해양기본지리 DB로 구축 활용
- 해양기본도(항만, 연근해) 및 주제도를 제작하여 해양GIS 기반조성 및 디지털 해양 국토 건설 기대

○ 추진근거 : 국가지리정보체계의 구축 및 활용 등에 관한 법률 제14조

○ 전담기관 : 국립해양조사원 측량과

○ 구축DB : 항만기본도 및 해수욕장 정보도, 해양GIS 수치지도 구축

4) 해안선조사 측량사업

0 목적

- 유비쿼터스 국토실현을 위한 정확한 국토의 길이, 면적 및 형상을 결정하는 근거자 료와 해양기본지리정보 체계구축 및 해양레저활동 증가와 같은 연안해양공간정보 수 요 급증에 따른 조사자료 확보가 필요
- 해양지리정보 체계구축으로 디지털 해양국토관리를 실현하고, 연안의 효율적인 보전 · 이용 및 해양정책 의사결정을 지원

○ 추진근거 : 수로업무법, 연안관리법, NGIS 법률

○ 전담기관 : 국립해양조사원 측량과

○ 구축DB : 해안선 조사 측량 및 해안선 조사 측량자료DB

5) 국가기준점 관리사업

ㅇ 목적

- 우리나라 위치의 기준 정립 및 위치정보 대국민 서비스를 위하여 국가기준점의 지속 적인 관리 및 정비 실시
- 지속적으로 삼각점, 수준점 등의 기준점 관리 및 정비를 실시하여 유비쿼터스 시대에 맞는 고도위치정보사회 실현 마련

○ 추진근거 : 측량법 제5조 및 제7조

○ 전담기관 : 국토지리정보원 측지과

○ 구축DB: 국가위치기준 제공 및 국가기준점(삼각점, 수준점)

6) 공간영상 구축사업

ㅇ 목적

- 항공사진 및 위성영상 등 공간영상정보의 부처별 개별 구축에 대한 중복투자를 방지하고, 공간영상정보를 이용한 국토관련 정책의 합리성을 도모
- 국가기본도 제작을 위해 권역별로 항공사진을 촬영하고, 국토모니터링을 통해 신속 하고 정확한 국토변화정보를 생산·제공하여 디지털 국토 재현을 위한 기반데이터를 구축

○ 추진근거 : 측량법

ㅇ 전담기관 : 국토지리정보원 공간영상과

○ 구축DB : 항공사진 촬영 및 DB구축, 다차원 공간정보 구축(수치표고자료 및 디지털 정사영상정보 구축), 국토모니터링 시행(영남·전남권역)

7) 공간통계지식체계 구축사업

ㅇ 목적

- 매년 센서스 개별공간정보DB, 센서스 지도, 경계DB의 갱신작업, 시계열 공간DB구축을 위한 과거 센서스 개별공간정보 구축을 통해 공공기관 및 일반인들이 통계GIS

서비스를 효율적으로 활용할 수 있도록 유통체계를 도입하고, 표준화·법제를 통해 공동활용을 위한 제도적 기반 마련

- 센서스 공간DB를 기반으로 공간통계 등을 포함하는 다양한 의사결정 방법을 이용하여 지식형 의사결정 지원체계 제공

○ 추진근거 : 통계법 제4장, NGIS 법률 제14조

ㅇ 전담기관 : 통계청

○ 구축DB : 통계GIS 서비스 유통, 행정경계기반 통계 GIS 서비스, 사업체 개별공간DB 구축 및 지도, 경계(기초 단위구, 집계구) 구축, 건축물에 관한 층별 전개도 및 공동 주택 전개도 구축 및 갱신

8) 새주소 기반 표준 전자지도 DB 구축사업

ㅇ 목적

- 국민의 생활권이 전국단위이므로 기업이나 관공서의 고객주소가 전국단위로 분포되어 있고, 국민의 주소사용 패턴을 새주소로 전환하기 위하여 전국단위 지원체계가 필요하고 현재의 새주소 전자지도가 자치단체별로 구축되어 전국단위 서비스가 곤란
- 각 지자체별 새주소 전자지도를 표준화·통합하여 전국 단위 자료로 구축
- ㅇ 추진근거 : 도로명주소 등 표기에 관한 법
- 구축DB : 새주소 기반 표준 전자지도 DB구축을 확대 및 통합, 통합센터 프로그램 기능개선 및 추가개발, 고지고시프로그램 개발, H/W 및 S/W 도입

나. 응용DB 구축사업

1) 새주소 기반 표준 전자지도 DB 구축사업

ㅇ 목적

- 국민의 생활권이 전국단위이므로 기업이나 관공서의 고객주소가 전국단위로 분포되어 있고, 국민의 주소사용 패턴을 새주소로 전환하기 위하여 전국단위 지원체계가 필요하고 현재의 새주소 전자지도가 자치단체별로 구축되어 전국단위 서비스가 곤란
- 각 지자체별 새주소 전자지도를 표준화·통합하여 전국 단위 자료로 구축

- 추진근거 : 도로명주소 등 표기에 관한 법
- 구축DB : 새주소 기반 표준 전자지도 DB구축을 확대 및 통합, 통합센터 프로그램 기능개선 및 추가개발, 고지고시프로그램 개발, H/W 및 S/W 도입

2) 도로와 상하수도 전산화사업

0 목적

- 지하시설물의 속성정보를 전산화하여 전국단위의 지하시설물 통합관리체계 구축으로 지하시설물 관리의 효율화를 도모하고
- 디지털 국토 건설의 기반을 마련하며 지하시설물 정보의 전산화로 시민의 안전을 확보하고 지방행정의 효율성을 도모
- 추진근거 : 국가지리정보체계의 구축 및 활용 등에 관한 법률 제26조
- 구축DB : 지자체 도로와 지하시설물 전산화사업, 지하시설물관리 범용프로그램 개발, 웹환경 도로기반시설물 범용시스템 개발지침 연구 수행, 지하시설물 DB 통합시스템 및 유지관리 시스템 개발

3) 국토건설지반정보 DB 구축사업

- 목적 : 지반조사 자료는 발주처별로 문서로 보관하고 재활용 되지 못하고 망실되고 있어 지반조사 자료를 DB화하여 조사 및 설계비용을 절감하고 정보공유 및 자료 처리의 효율성 극대화
- 추진근거 : 국가지리정보체계의 구축 및 활용 등에 관한 법률 제15조
- 구축DB : DB입력기관에 대한 교육 실시, 지반정보 관리시스템 개발, 국토건설지반 정보 DB 구축 및 관리, 지반정보 통합DB 및 시스템 활용

4) 광산지리정보시스템 구축사업

0 목적

- 폐광 후 방치된 광산의 관리시스템 부재로 인한 안전사고 발생으로 이를 예방할 수 있는 시스템 구축이 필요

- 사회간접자본(SOC) 사업 추진 시 광산으로 인한 사전재해환경성 검토 자료가 없으므로 광해방지사업 추진 시 기초자료의 체계적인 관리시스템 및 의사결정 지원 시스템이 필요
- 광산 및 광해실태에 대한 자료를 체계적으로 관리하고 국가 SOC사업 및 광해방지사 업 계획 수립 시 기초 자료를 제공하여 안전사고를 예방하고 효율적인 의사결정 지 원시스템 구축
- ㅇ 추진근거 : 광산피해의 방지 및 복구에 관한 법률 제11조 및 제39조
- 구축DB
 - 강원 삼척, 태백, 정선, 강릉지역 등 폐탄광 갱내도 및 광해실태자료 구축
 - ·지형도, 갱내도, 광구도, 지질도, 지반침하방지사업, 수질정화사업, 산림복구사업 관련 도형 및 속성정보 구축
 - 광산정보관리, 지반침하방지사업 정보관리, 광산수질정보 분석기능, 산림복구사업 지원 등을 위한 응용프로그램 개발
- 5) 국가광물자원지리정보망 구축사업

0 목적

- 국내 자원탐사·개발 도면자료에 공간분석 기능 및 속성정보를 구축하여 향후 광물 자원 탐사 및 국가차원의 기초인프라로 활용하기 위해 광물자원 정밀GIS 구축사업을 지속적으로 수행하여 국가차원의 정보인프라 확보가 필요
- 국내 광산지역 조사자료에 대한 GIS DB 구축으로 광업 분야 정책 입안, 광체 부존 유망구역 선정, 고속전철 최적입지 선정 지원 등 의사결정을 할 수 있는 광물자원지 리정보서비스 제공
- 추진근거 : 해외자원개발사업법 제10조
- 구축DB : 광산지질도 DB 구축, 내부사용자 GIS 시스템, 시추자료입출력시스템, 웹 GIS 시스템 구축

6) 항만지하시설물GIS DB 구축사업

0 목적

- 항만지하시설물에 대한 GIS DB를 구축하여 정확한 정보 활용 등을 통한 사고를 예방하고, 우영·관리효율성 증대 도모
- 전국 28개 무역항의 상·하수도, 전기, 가스, 통신, 송유관의 6종 지하시설물을 관리하기 위한 통합 GIS DB를 구축
- 각 지하시설물의 통합관리를 통하여 사고예방, 보수시간단축, 서비스향상, 항만 건설 정책자료 등에 활용
- 추진근거: NGIS법, 제3차 국가지리정보체계 기본계획
- 구축DB : 인천, 진해, 울산, 부산, 목포, 속초, 여수, 광양, 군산, 평택, 삼천포, 장 승포, 통영, 삼척, 마산, 제주, 서귀포항 등 GIS DB 구축 및 조사 탐사, 지반정보 DB를 구축 및 시스템 보완 등

7) 지하수정보관리체계 구축사업

0 목적

- 미래 청정 수자원인 지하수의 무분별한 개발과 오염을 사전에 방지하고 체계적으로 이용, 보전하기 위해 지하수정보 통합관리 시스템 구축과 대국민 서비스 필요
- 지하수 정보의 체계적인 관리 및 대국민 서비스제공을 통해 지하수의 적절한 개발· 이용과 효율적인 보전·관리 도모
- 추진근거 : 지하수법 제5조
- 구축DB : 관측망관리시스템 개발, 지하수시스템 개발 및 DB, 국가지하수정보지도 제작, 국가지하수정보센터 운영

8) 농촌용수물관리 정보화사업

0 목적

- 물 관련 부처간(국토해양부, 환경부, 농림수산식품부) 정보 공동활용으로 중복투자 방지 및 국민의 알권리 충족을 위한 농촌용수부문 정보화 및 농촌용수 관련 정부 정 책수립 지원

- 여러 기관에 산재되어 있는 물 관련 정보를 표준화하고, 수량·수질·농촌용수관련 정보를 중심으로 DB를 구축하여 공동활용
- 추진근거 : 하천법 제19조, 농어촌정비법 제19조, 국가물관리정보화기본계획
- 구축DB: 물관리정보화 기본계획 및 세부추진계획 수정·보완, 물관리정보 인프라 구축, 농촌용수 자원조사 및 기초자료관리시스템 구축, 의사(정책)결정지원시스템 구축 등

9) 하천지도 전산화사업

0 목적

- 하천정보표준화를 통한 국가 및 지방하천의 정보공유체계 구축하고 국가하천에 대한 하천기본계획 및 하천관리대장 등을 전산화하여 효율적인 하천관리 업무 지원
- 지자체, 관계부처에 홍수정보 제공을 위한 홍수위험지도 제작 및 제작지침 배포
- 추진근거 : 하천법 제21조 및 제22조
- 구축DB : 하천관리지리정보시스템 구축, 홍수위험지도(한강, 안성천유역 시범제작, 낙동강수계) 제작, 하천주제도 제작 등

10) 문화재지리정보활용체계(GIS) 구축사업

0 목적

- 각종 개발사업 시행 전 문화재에 대한 정보를 사전에 제공하고 국토개발과 문화재 보호의 문제점을 해결 및 문화재 정보에 대한 정보 활용 요구 증대에 따른 정보화 도모
- 국가GIS 및 지자체와의 문화재 지리정보 공동활용 및 대국민 지리정보 콘텐츠 서비스 확대, 문화재예측시스템 개발 및 GIS시스템 기능개선으로 지리정보 업무활용도 제고
- 추진근거 : NGIS법 제18조, 토지이용규제기본법 제8조 및 제9조, 문화재보호법 제63 조 및 제93조
- 구축DB : 문화재GIS활용시스템 통합, DB구축 및 유적정보 보완·갱신, 문화재예측 시스템 연구, 문화재GIS 종합정보망 운영기반 확충 및 활용 확대 등

11) 자연환경종합 GIS DB 구축사업

ㅇ 목적

- 자연환경조사 결과 및 각종 자연생태계조사 자료의 체계적으로 관리하고 DB자료를 활용한 자연환경보전업무 지원 필요
- 2008년도 제3차 자연환경 조사 자료를 수집, 정리한 GIS DB를 구축하여 자료를 관리하고 생태·자연도를 최신자료로 갱신
- 국민들이 보다 쉽고 친근감 있게 자연환경정보를 접할 수 있도록 인터넷을 이용한 Web-GIS 시스템 구축
- 추진근거 : 자연환경보전법 제34조
- 구축DB : 자연환경조사자료(생태자연도, 식생도, 동식물분포도, 생물종정보, 조사보고서)의 GIS DB 구축, 인터넷 서비스 시스템 구축, 표본DB구축 방안 연구, 자연환경조사 입력시스템 개발
- 12) 국토환경성평가지도 유지 · 관리사업
 - 목적 : 국토의 무분별한 사용으로 인한 난개발 방지와 국토환경의 효율적인 보전과 환경친화적인 국토 이용을 위해 국토에 대한 환경적 가치를 평가한 환경성 평가지도 를 작성・보급
 - 추진근거 : 환경정책기본법 제15조
 - 구축DB : 수도권지도 제작, 중·남부권지도 제작, 평가방법 개선 연구, 인터넷서비 스 실시, 국토환경성평가지도 제작에 활용한 기본정보의 변화내역을 반영한 지도 유 지 관리 등
- 13) 인공위성 영상자료를 이용한 중분류 토지피복도 갱신

0 목적

- 총량관리, 환경성 검토 등 사전 예방적 환경정책 변화에 따라 관련업무의 기초자료 로 활용하기 위한 토지피복분류도 구축
- 국토변화상을 반영한 지속적·주기적인 토지피복 분류도를 유지관리하여 환경보전과

지속가능한 국토이용 등의 업무를 합리적·과학적으로 추진할 수 있도록 기반 정보 제공

- 추진근거 : NGIS법 제18조, 측량법 시행령 제2조 및 시행규칙 제17
- 구축DB : 80, 90년대 남북한지역 대분류 토지피복도, 남한 지역 중분류 토지피복도, 남한 전역 중분류 토지피복도 갱신을 위한 기초 영상자료 전처리 등

14) 국가환경평가지원시스템 구축사업

ㅇ 목적

- 환경영향평가 제도의 합리화를 위해 환경평가 관련 정보를 DB로 구축하고, 평가기 간 단축을 통한 기업의 투자확대 및 경쟁력 강화를 유도할 수 있는 기반 마련
- 환경평가제도 개선에 따라 이원화 되어 제공되고 있는 사전환경성검토 및 환경영향 평가시스템의 통합기반을 마련하고, 오프라인 정보에 대한 온라인 자동화 프로세스 를 구축
- 환경평가관련정보에 관한 원스톱 서비스 체계 포탈을 구축
- 추진근거 : 환경정책기본법 제15조, 환경정책기본법 시행령 제4조
- 구축DB : 사전환경검토대상 및 환경영향평가대상 사업지 위치, 환경조사지점, 사후 환경조사 지점 등

15) 개발제한구역 정보화사업

ㅇ 목적

- 수작업으로 관리하고 있는 개발제한구역관리를 정보화하여 체계적인 관리, 정책지 원, 민원편의 등 효율적인 행정업무 수행
- 개발제한구역 현황관리, 불법행위 단속, 주민지원, 행위허가, 토지매수관리 등 개발 제한구역 제반업무 지원
- 추진근거: 개발제한구역특별조치법 시행령 제10조
- 구축DB : 시설물 입지 평가지표 개발, 개발제한구역 대전권·울산권 DB구축, 현황 관리 시스템 개발 등

16) 농지정보화사업

ㅇ 목적

- FTA 등 농업개방 확대에 대응한 농촌행정업무의 효율성을 제고하고 과학적이고 체계적인 농지정책 실행을 위하여, 농지정보화 사업으로 농지관련 정보의 지속적인 생산과 관리
- 농지정보화를 촉진하고 전국 농업진흥지역도 및 농지전용현황도 DB를 구축하여 농 지관리업무 전산화를 통한 업무 효율화
- ㅇ 추진근거 : 한국농촌공사 및 농지관리기금법, 농지법
- 구축DB : 시군구의 DB구축, 농림지리정보시스템 구축, GIS 포탈사이트 개발, 농지 원부시스템 운영지원, 농업진흥지역 관리 등

17) 농촌어메니티자원도 구축사업

ㅇ 목적

- 농촌공익기능 정보시스템과 연계하여, 농촌개발 계획·평가지원 등의 과학적이고 계획적인 농촌개발을 유도 할 수 있는 농촌어메니티자원도 구축이 필요
- 국가농촌자원정보를 통합하고 인벤토리를 구축하여 고객인 영농인, 정책담당자, 내·외부 연구자, 일반국민 등 요구에 부합하는 전자지도로 농촌어메니티자원 정보 를 제공
- 추진근거 : 농촌진흥법 제2조, 농림어업인 삶의 질 향상 및 농산어촌지역 개발 촉진 관한 특별법 제30조, 32조, 38조
- 구축DB : 읍면의 농촌자원 조사 및 DB 구축, 농촌자원조사 시스템 개발, 자원관리시 스템 개발, 웹사이트 및 Web_GIS 구축, 농촌어메티니자원 모니터링 시스템 구축 등

18) GIS 기반 농업환경정보시스템 구축사업

ㅇ 목적

- 친환경농업 정책의 추진과 과학적이고 종합적인 기후변화 위험평가 체계를 위한 농 업환경 실태 및 동태적 변화를 볼 수 있는 GIS 기반 농업환경정보 제공이 요구됨

- 목표 : 농업환경자원 인벤토리 구축, 시·공간적 취약성 지도 작성 및 시스템 구축, 사용자별 농업환경정보 서비스
- 추진근거 : 국무총리령 제422호, 친환경농업육성법 제5조
- 구축DB : 농업환경자원정보 DB, 농업환경지도, 농업환경변동조사 정보 제공, 농업 환경자원정보 공간DB, 농업환경지도 웹GIS 시스템 구축, 한국토양정보시스템 개선 및 유지보수, 농업과학기술정보(ITA) 수립에 필요한 자료 작성 등

19) 산림지리정보시스템 구축

0 목적

- 전 국토의 64%인 산림의 과학적·합리적인 관리 및 산림에 대한 국민의 활용 증대 와 산림에 대한 국민의 알 권리 충족
- 국가GIS와 연계한 산림분야 GIS구축·활용으로 산림자원을 과학적·합리적으로 관리하고 신속하고 정확한 산림정보 제공으로 산불, 산사태 등 산림재해를 예방 및 효율적 대처
- 추진근거: NGIS법, 산림기본법, 산림자원의 조성 및 관리에 관한 법률, 산지관리법
- 구축DB : 산림분야 주제도 제작 및 DB, 산림분야 응용시스템, 산림 GIS 표준화체계 구축사업, 산림 GIS WEB 포털 시스템, 산림 GIS 운영 기반 확충 등

20) 국가공간정보체계 구축을 위한 산림입지도 제작사업

ㅇ 목적

- 기존 1/25,000 산림입지도의 활용성의 한계로 보다 정밀한 산림입지도 제작 필요
- 국토해양부의 국가공간정보체계 구축과 연계하여 정밀 산림입지도 DB를 구축하고 지적도 기반의 상세한 산림지리정보 DB를 구축하여 국토정보화 사업과의 연계 및 부처 간 정보 공동활용을 극대화하고 산림정보의 대국민 서비스 제고
- 추진근거 : NGIS법 제15조, 20조, 21조, 산림기본법 제25조, 산림자원의 조성 및 관리에 관한 법률 제33조
- 구축DB : 1/5,000 산림입지도

21) 전자해도 제작사업

ㅇ 목적

- 선박의 대형화, 고속화에 따른 해난사고 예방을 위한 새로운 운항 시스템이 필요하고 이를 위해 고품질의 전자해도와 최신의 전자해도 유지관리 체계를 구축하여 선박의 항해 안전 확보
- 기 구축된 전자해도를 최신의 측량자료에 의거 지속적으로 갱신 및 유지관리 할 수 있도록 신·개정판 해도 및 보정도를 전자해도로 제작하고 격자형 전자해도 공급에 따라 최신의 정보에 의한 격자형전자해도 유지관리
- 추진근거 : 수로업무법 제7조 및 제22조
- 구축DB : 전자해도·보정도, 전자해도 보안, 소형선용 전자해도, 전자해도 업데이트·유 지관리, 격자형 전자해도 등

22) 종합해양정보시스템(TOIS) 구축사업

ㅇ 목적

- 해양지리정보의 중요성이 증대됨에 따라 해양이용·개발, 연안관리, 해양재해예방, 안전항로개발 등 국가해양의 효율적이고 종합적인 이용·관리를 위해 매년 생산되는 대량의 해양조사자료를 체계적으로 통합관리하고 활용하기 위한 방안 필요
- 해양에 기본이 되는 국가기본지리정보 및 수치해도, 측량원도 등 해양지리정보를 구축하고 업무처리 효율 향상 및 공동활용 강화, 고객 지향의 서비스를 위한 시스템 고도화
- 추진근거 : NGIS법, 정보화촉진법, 수로업무법
- 구축DB : 해양지리정보 공간DB, 해양공간정보처리기능및 해양지리정보서비스 개발, 해양조사자료 및 해양지명관리 DB 등

23) 연안해역해저정보 조사사업

ㅇ 목적

- 연안의 효율적인 관리를 위해 연안해역의 해저지형, 해저시설물에 관한 실태조사측 량 필요
- 국가GIS 및 해양GIS 구축을 위한 연안해역의 기본지리정보 기반데이터 확보 필요
- 연안의 모래, 자갈 및 규사토 채취 등 인·허가에 필요한 정보 및 연안해역의 보 전·관리를 위한 기초자료를 제공하고, 국가공간정보체계를 구축하기 위한 정밀연안 정보도 제작이 필요한데 이를 위한 기초자료를 확보하기 위해 조사 실시
- 추진근거 : 국가지리정보체계의 구축 및 활용 등에 관한 법률 제14조
- 구축DB : 덕적도, 대이작도, 선갑도, 태안반도, 안흥부근 연안해역 해저정보조사(해 저지형도·천부지층도·저질분포도 등) 실시 등

24) 연안해양정보실시간제공시스템 구축사업

0 목적

- 국민의 해양활동 지원과 해양사고에 대한 대응을 위한 해수유동모니터링구축이 시급한 실정이고 태안 유류사고에 의한 오염물질 이동 예측, 빈번한 해상사고로 인한 조난자 수색에 대한 대책과 예방 정보 제공이 필요
- 신속한 해양정보의 제공으로 선박의 안전운항 및 해양의 실시간 모니터링 구현
- 추진근거: NIGS법, 해양수산발전기본법, 수로업무법, 자연재해대책법
- 구축DB : 국가수직기준면 모니터링망 구축, 수치조류도 제작, 실시간 조류 수치모 델링 DB구축, 해양 분야 저장·가공·모델링 단위센터(m-GEOSS) 기반구축, 클리어 링 하우스(Clearing House) 구축, 국가인증 표준화체계 구축 등

27) 관광지식정보시스템 운영사업

ㅇ 목적

- 국가 관광정보화 추진전략계획에 따라 관광정책, 관광연구, 관광산업 지원 등을 위해 관광지식정보시스템 구축 및 운영

- 관광자원DB, 관광통계DB, 관광지식DB, 관광법령DB 및 관광GIS의 효율적 관리 및 정보 제공
- 추진근거: 국가관광정보화추진전략계획
- 구축DB : 종합관광정보시스템 구축, 관광자원DB, 관광통계DB, 관광지식DB, 관광 법령DB, 관광GIS 등 보완 구축 및 운영 등

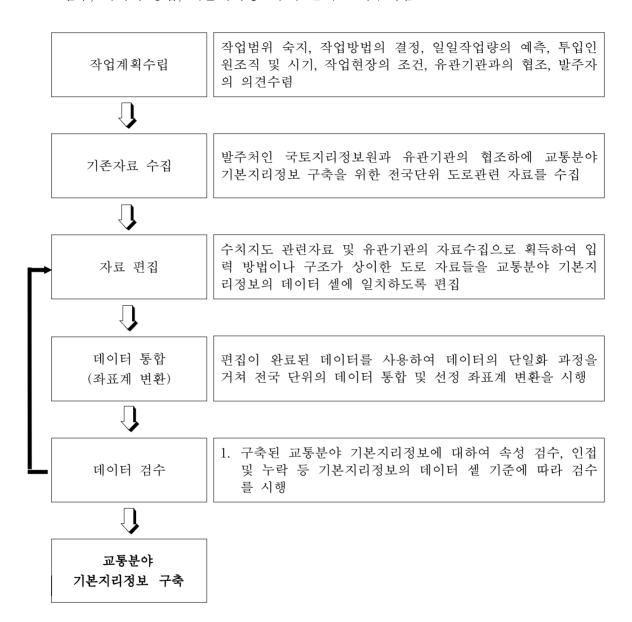
28) 영상정보시스템 유지관리사업

ㅇ 목적

- 항공사진의 디지털화를 통해 노후 자료를 장기 보존하고 훼손을 방지하여 체계적으로 관리하고 적시에 자료 제공
- 국토의 변천과정 자료를 제공하여 민원인에게 온라인으로 서비스 및 항공사진 및 위 성영상 등 수요에 대한 서비스 향상
- 추진근거 : 측량법
- 구축DB : 항공사진 이미지 DB 구축, 시스템 개발, 국토공간영상정보시스템 유지보 수 등

3. 교통주제도와 교통분야 기본지리정보

가. 교통 기본지리정보 개요


- 기본 지리 정보의 구축 목적은 기본지리정보 표준화와 이를 통해 기본지리정보 구축 사업을 성공적으로 추진할 수 있도록 기반을 마련하여 광범위한 활용 및 유통마인드 를 제고할 수 있는 생산 표준을 제공함으로써 효율적인 기본지리정보를 구축하고 활 용하는데 있음
- 데이터 배포(유료)는 기본지리정보 데이터 교환표준인 NGI형식을 원칙으로 함
- ㅇ 교통분야 기본지리정보의 항목에는 도로와 철도가 포함됨
- 도로는 도로중심선(단위도로, 도로교차점)과 도로경계(단위도로면, 도로교차면), 철 도는 철도중심선(단위철도, 철도교차점)과 철도경계(단위철도면) 지형지물로 구분

나. 기본지리정보 좌표계

- ㅇ 단일평면 직각좌표계 원점
 - 명칭 : UTM-K(한국형 UTM좌표계)
 - 원점의 경위도
 - · 경도 : 동경 127°30′00.000″
 - ·위도 : 위도 38°00′00.000″
 - 적용구역 : 한반도 전역
- 투영법 : TM(횡단 머케이터)로 하고 축척계수는 0.9996으로 함
- ㅇ 투영원점의 수치
 - 기존 직각좌표와의 혼란방지와 차별화하기 위해 투영원점의 수치를 X(N)=2,000,000m, Y(E)=1,000,000로 정함

다. 교통 기본지리정보 구축단계

○ 교통분야 기본지리정보구축 단계는 작업계획수립, 기존자료수집, 자료편집, 데이터 검수, 데이터 통합, 기본지리정보구축 단계로 나누어짐

<그림 2-1> 교통분야 기본지리 정보 구축 단계

라. 교통지리정보 데이터 내용 및 구성

- 교통분야 기본지리정보는 도로와 철도라는 부주제(sub-theme)로 구성되며, 도로는 도로중심선과 도로경계라는 지형지물 클래스를 갖으며, 각기 추상클래스를 제공하여 지형지물 타입이 이를 상속받아 클래스를 정의함
- 도로중심선 지형지물 클래스는 단위도로와 도로교차점이라는 지형지물 타입을 정의하 며, 도로경계는 단위도로면과 도로교차면이라는 지형지물 타입을 정의함
- 철도중신선 지형지물 클래스는 단위철도와 철도교차점이라는 지형지물 타입을 정의하 며, 철도경계는 단위철도면이라는 지형지물 타입을 정의함

<표 2-2> 교통분야 기본지리정보 데이터타입 정의

구분		기허지무디이	지청지무디이 저이	
부주제	지형지물클래스	지형지물타입	지형지물타입 정의	
도로	도로중심선	단위도로	차량의 통행을 위해 만들어진 지표면의 선형성분이며 도 로네트워크를 구성하는 가장 작은 기본단위	
		도로교차점	단위도로를 연결하는 물리적인 객체	
	도로경계	단위도로면	한 개의 단위도로에 해당되는 차로, 인도, 자전거도로를 모두 포함하는 도로경계선에서 도로경계선까지의 도로면	
		도로교차면	도로와 도로가 만나서 생성되는 교차부분	
철도	철도중심선	단위철도	기차의 통행을 위해 만들어진 지표면의 선형성분이며 도로 네트워크를 구성하는 가장 작은 기본단위	
		철도교차점	단위철도를 연결하는 물리적인 객체 (철도역이 있는 부분과 분기지점)	
	철도경계	단위철도면	철도법에서 정한 철도부지와 퇴거시키거나 하와시킬 수 있는 지역	

- 단위도로의 속성항목은 UFID, 시작점, 종료점, 단위도로방향(양방먕, 단방향, 기타), 도로노선번호, 도로종류(고속도로, 고속국도, 일반국도, 지방도, 시/군도, 면기간도로, 부지내도로, 기타)으로 구성되어 있음
- 교통주제도 레벨 2 링크에는 일방통행 유무 속성으로 양방향, 단방향을 구분하며, 방향은 시작점과 종료점으로 진행방향을 알 수 있음

- 교통주제도 레벨 2 링크 또한 현장에서 조사한 도로노선번호가 입력되어 있으며, 도로종류는 고속국도, 도시고속화도로, 일반국도, 국가지원지방도, 지방도, 기타 도로로 구분되어 기본지리정보와 다소 차이가 있음
- 도로교차점 속성항목은 UFID, 도로교차점의 종류(일반교차점, 입체교차점, IC, JC, 교통시설교차점, 기타)으로 구성되어 있음
- 교통주제도 레벨 2 노드에는 도로교차점의 종류가 일반교차점, 도로시종점, 속성변경점, 도로종료점, 행정경계교차점(시군구), 도곽교차점, U-TURN지점, IC/JC, 도로시설물 교차점, 더미노드로 구분되어 기본지리정보의 도로교차점의 종류를 모두 포함하여 더 세분되어 있음
- 단위도로면과 도로교차점의 속성항목은 각각의 UFID로 구성되어 있음
- 단위철도의 속성항목은 UFID, 철도명, 철도종류(미분류, 보통철도, 고속철도, 지하철, 특수철도, 기타)로 구성되어 있음
- 교통주제도의 철도중심선에는 철도명칭이 입력되어 있으며, 보통철도, 고속철도, 지 하철 등에 대한 구분은 명칭 또는 철도노선번호로 구분이 가능함
- 철도교차점의 속성항목은 UFID, 철도교차점명, 철도교차점종류(미분류, 일반분기지점, 철도역, 철도종점, 기타)로 구성되어 있음
- 교통주제도 철도교차점에는 철도교차점명(철도정차장 명칭)이 입력되어 있으며, 철도 교차점 종류는 미분류, 여객역, 화물역, 보통역, 조차장, 객차조차장, 화차조차장, 신호정차장, 신호정차장, 신호소, 임시승강장, 간이역, 배치간이역, 무배치간이역, 지하철역, 지하철환승역, 기타로서 기본지리정보다 더 세분되어 있음
- 단위철도면의 속성항목은 UFID, 철도면명으로 구성되어 있으며, 철도면명에는 철도 노선의 명칭이 입력되어 있음
- 단위철도는 철도교차점에서 시작하여 철도교차점에서 끝나는데 철도가 시작되는 지점 또는 종료되는 지점에서는 단위철도의 시종점 철도교차점 중 한 개의 노드만 존재하는 경우가 있음

마. 교통주제도와 교통분야 기본지리정보

1) 교통주제도

- 신설 및 변경도로에 대해 한국도로공사, 5개 지방국토관리청, 각 지자체를 통해 매년 자료를 수집하고, 이를 바탕으로 교통시설물 조사(현장조사)를 수행하며, 조사결과를 교통주제도(도로)에 반영하여 현재성과 신뢰성을 확보하여 각종 교통계획 및 교통공학에 사용될수 있도록 자료를 제공함
- 중앙부처·지자체 등을 포함한 모든 공공기관의 교통계획 및 정책수립 등의 추진시 필수 기초자료로 활용
 - 국가기간교통망계획·중기교통시설투자계획 등 각종 교통계획
 - 교통정책(교통수요관리, 도로운영, 교통시설투자 타당성 검토 등)
- 산업계·학계 및 연구원, 민간부문 사업자 등에 다양한 분석자료로 활용하도록 하고 일반국민에게 교통관련 자료제공 추진
 - 산・학・연(교통수요분석・교통영향평가・교통투자평가 등 연구기초자료)
 - 일반 국민(교통통계정보, 교통연구자료 등)

2) 교통분야 기본지리정보

- ㅇ 법적근거
 - 국가지리정보체계구축및활용등에관한법 제14조(기본지리정보의 구축)
- ㅇ 국가기본지리정보구축 사업목적
 - 국가지리정보체계(NGIS)의 가장 기본적인 데이터를 구축하여 다양한 사용자가 지리 정보구축에 활용할 수 있는 기초지리정보를 구축 및 제공하고자 함
 - 각자의 필요성에 따라 다양한 방법으로 개별적 공간데이터를 구축하여 중복투자, 데이터간의 불일치 등이 발생함에 따라 지리정보의 효율적인 구축, 데이터간의 일관성유지 및 사용자 요구와 활용성을 높이고자 함

○ 교통부문 지리정보 추진 경위

- '03년 : 전국 단위의 교통분야 도로 기본지리정보 구축

- '06년 : 도로(호남, 영남, 강원권) 지리정보 갱신, 철도 기본지리정보 신규 구축

- '07년 : 도로, 철도 지리정보 갱신(수도권, 충청 일부)

- '08년 : 도로, 철도 지리정보 갱신(충청, 전북, 대전, 광주, 대구, 부산, 울산)

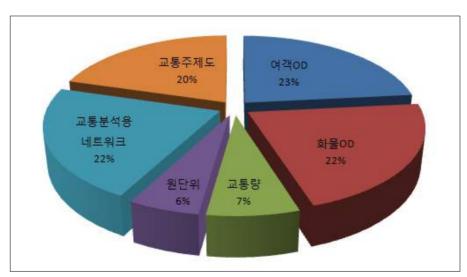
- '09년 : 도로, 철도 지리정보 갱신(경남, 전남, 서울, 인천)

○ 교통부문의 지리정보 갱신은 1/5000 수정계획에 따라 2006년 까지는 5개 권역으로, 2007년 부터는 4개 권역으로 구분하여 연차적으로 수행하고 있음(광역도시권은 2개 (서울/인천, 대전이남) 권역으로 구분하여 갱신)

3) 구축내역 비교

<표 2-3> 도로중심선 구축내역 비교

항목	도로중심선		비고	
구분	구축 대상 도로 도로중심선 취득방법			
교통주제도	2차로이상의포장도로(입체램프는차로수무관)	- 관련기관의 준공도로현황 자료를 수집하고, 현장조사를 수행하여 조 사자료를 교통주제도에 반영함	- 현지조사를 통한 도로중심선 추가 - 각종 문헌조사	
교통분야(도로) 기본지리정보	고속도로, 국도, 지 방도, 시·군도, 면 리간 도로, 부지간 도로	도로경계선을 구축한 후 가상의 도로 중심선 추출(도로 폭의 이등분점을 연결)		


ㅇ 속성자료 구축부분

- 기본지리정보의 속성항목은 도로번호 외 4개의 항목으로 구성된 반면, 교통주제도의 경우, 기본지리정보의 속성항목을 모두 포함하며 교통계획 및 교통분석용 네트워크 구축을 위하여 교통 전반에 대한 속성항목으로 구성되어 있음

제2절 교통주제도와 NGIS DB의 융합 및 활용성 제고

1. 교통주제도 자료 활용 현황

- 교통주제도는 국가교통DB센터에서 교통시설물 조사 자료를 바탕으로 구축하는 GIS Map으로서 사용자들은 국가교통DB센터 홈페이지(www.ktdb.go.kr)에서 KTDB 자료 제공 절차를 통하여 자료를 취득 및 이용할 수가 있음
- 따라서, 교통주제도 자료 활용 분석대상은 2009년 1월부터 2009년 12월까지 1년간의 국가교통DB(KTDB)로부터 공식적으로 자료를 제공받은 기관을 대상으로 함
- KTDB에서 제공되는 자료는 여객 및 화물OD, 교통분석용 네트워크, 교통주제도, 교 통량, 유발원단위 자료임
- 지난 1년간의 KTDB 자료 제공 현황을 분석해본 결과 교통주제도는 전체의 20%로서, 여객OD(23%), 화물OD(22%), 교통분석용 네트워크(22%)와 더불어 높은 비중을 차 지하고 있음
 - 자료요청건수 115건, 자료별 제공건수 308건
 - 자료별 제공건수는 요청건수별 각 제공자료 건수를 합한 것임

<그림 2-2> KTDB 자료제공 현황(2009.1 ~ 2009.12)

2. 교통주제도 활용 결과

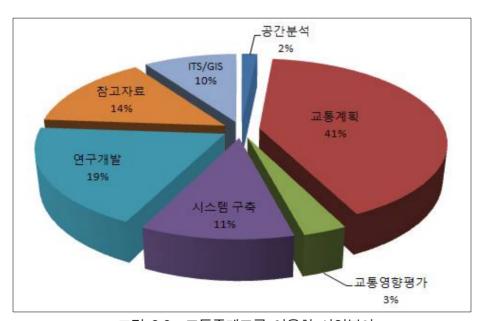
가. 교통주제도 활용 분야

- 2009년 1월부터 2009년 12월까지 제공된 KTDB 자료 중 교통주제도에 대해서 자료요 청기관에서 교통주제도를 어떻게 활용하였는지를 분석함
- 교통주제도 자료신청 기관과 해당 활용사업명칭 등 자료신청 현황과 이용분야는 <표 2-4>와 같음

<표 2-4> 교통주제도 자료 요청 및 이용분야

자료요청일	요청기관	활용사업명칭	이용분야
2009-1-14	환경부	노령인구의 환경오염으로 인한 건강영향 실태조사	참고자료
2009-1-16	한국교원대학교	교통사고 패턴 분석	ITS/GIS
2009-2-2	한국교통연구원	고속도로 휴게소 Sub-Hub를 통한 시외/고속버스 노선 망의 연결성 극대화 방안	ITS/GIS
2009-2-2	국토해양부	제2차 국도,국지도 시설규모 조정방안 연구	교통계획
2009-2-3	국토해양부	도시재생후 환경위생 개선평가	ITS/GIS
2009-2-16	한국토지공사	기업입지지원시스템 구축	시스템 구축
2009-2-16	부산지방국토관리청	국도4호선 왜관~대구 시계 등 23개 국도사업 사후평가	참고자료
2009-3-2	한국개발연구원	포항~삼척간 고속도로 건설사업 예비타당성 조사	교통계획
2009-3-2	한국개발연구원	보령~부여 국도 건설사업 예비타당성 조사	교통계획
2009-3-2	한국개발연구원	고흥~봉래 국도 건설사업 예비타당성 조사	교통계획
2009-3-2	한국개발연구원	태릉~구리IC도로 건설사업 예비타당성 조사	교통계획
2009-3-2	한국개발연구원	서대전IC~엄사 도로 건설사업 예비타당성 조사	교통계획
2009-3-2	한국개발연구원	구포대교~대동수문 도로 건설사업 예비타당성 조사	교통계획
2009-3-2	한국개발연구원	사상~하단간 도시철도 건설사업 예비타당성 조사	교통계획
2009-3-2	한국개발연구원	울산신항 인입철도 건설사업 예비타당성조사	교통계획
2009-3-2	한국개발연구원	동두천~연천 복선전철 건설사업 예비타당성조사	교통계획
2009-3-2	한국개발연구원	포항영일신항 인입철도 건설사업	교통계획
2009-3-2	한국개발연구원	명지지구간선도로 건설사업	교통계획

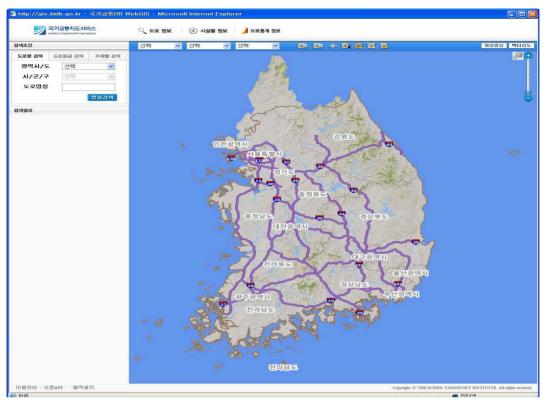
<표 2-4> 교통주제도 자료 요청 및 이용분야(계속)

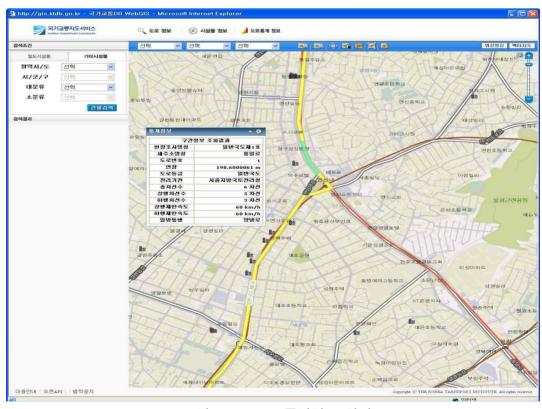

자료요청일	요청기관	활용사업명칭	이용분야
2009-3-4	환경부	어린이의 환경노출에 의한 건강영향조사	ITS/GIS
2009-3-13	김해시	동김해IC~식만JCT 도로개설사업	교통계획
2009-3-20	한국건설교통기술 평가원	환승센터 구축 기본 구상 및 연계교통체계 분석방법론 개발	연구개발
209-3-24	경상남도청	경상남도 지역물류기본계획 수립	연구개발
2009-4-8	전라남도청	전남 지방도 정비기본 계획	교통계획
2009-4-9	대구광역시	대구광역시 교통종합정보DB 관리시스템 구축사업	시스템 구축
2009-4-13	국토해양부	항만배후수송망 기본계획 수립연구	연구개발
2009-4-30	보건복지가족부	심뇌혈관환자의 지역별 의료기관 이용 현황분석	연구개발
2009-5-6	부산지방국토관리청	풍산~법전1 국도건설공사 기본설계 용역	교통계획
2009-5-19	익산지방국토관리청	광양시 국도대체우회도로(중군~진정)건설공사 실시설계 용역	참고자료
2009-6-5	평택시청	평택시 버스노선 체계개편 및 대중교통시설 타당성조 사, 기본구상 연구용역	연구개발
2009-6-17	기획재정부	예비타당성 조사	교통계획
2009-6-22	국토해양부	2009년도 도로관리통합시스템 유지관리	시스템구축
2009-6-22	부산지방국토관리청	북면~부곡 국도건설공사 실시설계	참고자료
2009-6-25	부산지방국토관리청	구미시관내 국도대체우회도로(구포~생곡)건설공사 실시 설계	교통계획
2009-6-25	통계청	센서스 공간DB 구축	참고자료
2009-6-29	국토해양부	고속버스 사업계획 인가	교통계획
2009-7-2	국토해양부	제2차 국도_국지도 시설규모 조정방안 연구	참고자료
2009-7-6	한국도로공사	당진~천안간 고속도로 건설사업 교통영향평가	교통영향평가
2009-7-24	한국철도시설공단	대구선(금강~영천) 복선전철 교통영향분석·개선대책수 립	교통계획
2009-7-29	한국교통연구원	도로교통 안전진단 및 관리를 위한 통합 정보시스템 구 축	연구개발
2009-7-30	영남대학교	Transims와 교통주제도의 호환성에 관한 연구	교통계획

<표 2-4> 교통주제도 자료 요청 및 이용분야(계속)

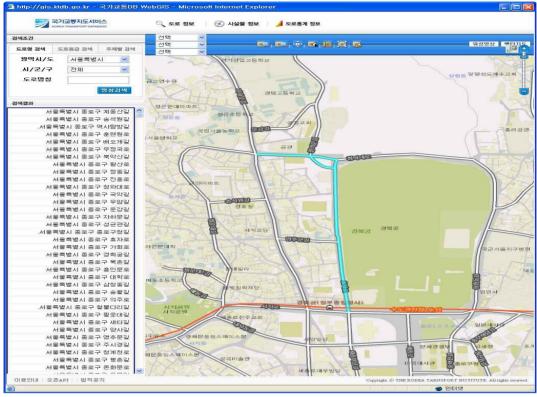
자료요청일	요청기관	활용사업명칭	이용분야
2009-8-17	국토해양부	통합적 물류네트워크 구현 및 운영방안 연구	연구개발
2009-8-17	환경부	어린이의 환경노출에 의한 건강영향조사(5차)	연구개발
2009-8-20	한국토지공사 대구경북지역본부	경산무학지구 택지개발사업 조사설계 용역	교통계획
2009-8-27	부산광역시	부산광역시 도시교통정비기본계획 수립용역	교통계획
2009-8-28	한국환경정책 평가연구원	기후변화 적응 강화를 위한 사회기반시설의 취약성 분석 및 기후변화 대응 방안 연구	연구개발
2009-9-1	농림수산식품부	지역발전정책 변화에 대응한 농어촌 정책 방향설정 및 농 어촌 서비스기준 도입방안 연구	참고자료
2009-9-22	경기도청	경기도(수도권)성장관리모니터링시스템	교통계획
2009-9-25	강릉원주대학교	GIS와 뉴럴 네트워크를 이용한 주택시장 분석연구	공간분석
2009-9-28	국토해양부	국토공간계획지원체계 구축사업(4차)	연구개발
2009-9-28	강원도	강원도 투자유치지원 토지정보시스템 구축	시스템구축
2009-10-8	서울특별시	2009 통합지리정보시스템 구축사업	시스템구축
2009-10-12	고려대학교	통행 목적별 여객OD 분석을 통한 중부지방 기능지역 구 조의 변화 (가제)	참고자료
2009-10-19	서울대학교	국내 교통신호 규제 현황 및 시사점	참고자료
2009-10-22	국토해양부	도로부문 중장기계획 수립 연구(제3차 5개년(2011-2015) 계획, 2차분	교통계획
2009-10-22	인천광역시	인천 KOPSS	교통계획
2009-10-26	한국교통연구원	철도투자평가편란 전면개정 연구 중 '정책적분석 개선방 안 연구' 분야	연구개발
2009-10-26	광주광역시	광주광역시 지능형교통체계(ITS) 종합 기본계획 수립	ITS/GIS
2009-11-4	국토해양부	도시부 간선도로 교통정보수집제공 방안 연구	ITS/GIS
2009-11-9	용인시청	용인시 공간계획지원시스템(KOPSS)구축 용역	시스템 구축
2009-11-19	경찰청	교통경찰정보시스템 유지보수사업	시스템 구축
2009-12-1	환경부	환경요인과 질환간의 상호작용 연구	교통영향평가
2009-12-2	충청북도	청주 테크노폴리스 진입도로 건설사업 타당성 검증	교통계획
2009-12-9	한국건설교통기술 평가원	도로교통 안전진단 및 관리를 위한 통합정보시스템 구축 (5차년도)	연구개발

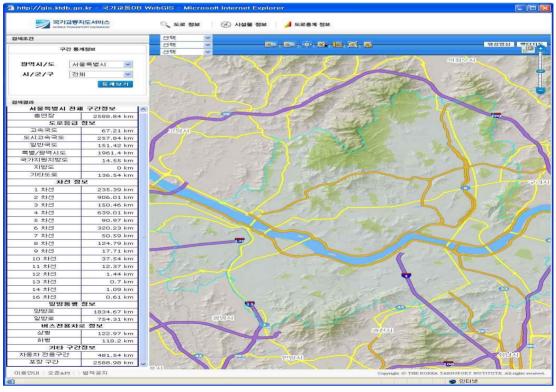
나. 교통주제도 활용결과 분석


- 교통주제도 제공 자료를 이용한 사용분야를 분석한 결과 교통계획에 41% 사용된 것 으로 가장 높게 나타남
- KTDB 제공 자료 중에서 높은 비율을 나타내는 것이 여객 및 화물OD 자료인데, 이 자료는 또한 교통분석용 네트워크 자료를 같이 이용해야만 함
- 따라서, 교통분석용 네트워크를 갱신 및 보완, 현행화하는 과정에서 현장조사를 바탕 으로 구축된 교통주제도를 참고 및 활용한 것으로 나타남
 - 교통주제도는 KTDB에서 제공되는 여객 및 화물OD, 교통분석용 네트워크와 현행시 점이 동일함
 - 한국도로공사, 지방국토관리청, 각 지자체로부터 해당 현행시점에 맞는 준공/개통 도로 현황을 협조 받아서 현장조사 참고자료로 활용하고, 현장조사 자료를 바탕으로 교통주제도를 보완 및 갱신함
- 연구개발 및 공간분석은 주로 연구과제 수행시 기본도면 또는 공간분석을 위한 자료 로 활용함
- 시스템 구축 및 ITS/GIS 이용자는 시스템 구축 및 유지보수 또는 GIS를 이용한 연구 과제 수행시 활용함


<그림 2-3> 교통주제도를 이용한 사업분야

3. 지리정보와 교통주제도가 융합할 수 있는 방안 연구


- 현재 KTDB 홈페이지에서 제공되고 있는 국가교통DB 지도서비스에는 다음과 같은 지 리정보가 융합되어 서비스되고 있음
- 새주소 도로명 전자지도(행정안전부)
 - 지번 중심의 주소체계를 도로를 중심으로 전환하는 새주소 사업을 통해 구축된 성과 물 중 도로망과 관련된 DB를 말함
 - 자료의 갱신주기가 불규칙하며 속성정보의 구성에 차이가 있으나, 도로 및 건물 DB 의 세밀도가 높고 비교적 수월하게 자료수집이 가능함
 - 화면 확대를 할 경우 새주소 도로면형이 속성정보 없이 웹 표출용으로 이용되고, 새 주소 도로명이 표출됨
- ㅇ 수자워 공사
 - 수자원공사의 DEM 자료, 음영기복도, 수계자료를 이용하여 웹 표출용으로 이용
- 위성영상은 교통주제도 도로망 표출을 위한 보조자료로 활용됨
- 교통주제도의 도로중심선은 도로등급별로 구분되어 표출되며, 정보보기를 선택하면 DB와 연동되어 속성정보를 볼 수가 있음
- 지도서비스의 도로정보를 통하여 지역별 도로명칭 검색을 실행하면 해당 도로를 선택 가능하고, 도로등급별/지역별 해당도로를 검색 및 표출이 가능한데, 이는 교통주제도 의 속성정보를 이용하는 것임
- 또한, 일방통행 및 자동차 전용도로, 버스전용차로 구분 및 도로등급별, 속도정보별, 차선정보별 각각의 주제별로 검색 및 표출이 가능함
- 시설물 정보에서는 철도시설물(철도노선 및 철도 정차장) 및 기타 시설물(공항시설, 항만시설, 화물터미널, 자동차 관련시설)의 검색 및 표출이 가능함
- 도로통계 정보에서는 지역별 도로등급별 연장, 차로수별 연장, 일방통행/양방향 통행 별 연장, 버스전용차로 연장, 자동차 전용도로 구간 연장을 알 수가 있음


<그림 2-4> 국가교통DB 지도 서비스

<그림 2-5> 도로 구간정보 화면

<그림 2-6> 도로 정보 화면

<그림 2-7> 도로통계 정보 화면

제3절 교통주제도 사용대상 및 범위 확대

1. 국가교통DB(KTDB) 자료와 교통주제도 연계방안 모색

가. KTDB 자료의 검토

- 국가교통DB센터 홈페이지에서 서비스가 제공되고 있는 자료의 형태 및 내용을 파악·분석하고 GIS DB를 생성할 수 있는지 여부를 파악함
- GIS DB 생성 가능 경우
 - 총 통행량, 목적통행량, 수단통행량 등과 같이 대존별 속성값이 입력되어 있는 경우에는 위치정보(대존)가 존재하기 때문에 교통주제도 행정구역과 연계하여 GIS DB를 생성할 수 있음
 - 목적별 지역간 여객OD, 수단별 지역간 여객OD 등 OD(기종점 통행량)의 경우에는 교통주제도 행정구역을 이용하여 센트로이드를 구축하고, 기점과 종점을 연결한 선으로 OD 레이어를 생성한 후 OD 레이어와 정리한 자료를 연계하여 GIS DB를 구축함
- GIS DB 생성 불가능 경우
 - 적재능력별 화물자동차 분석대수 및 비율(상업용, 비상업용), 1일 대당 적재능력별 적재 및 공차통행특성(상업용, 비상업용)은 지역구분 없이 적재능력(1톤 이하, 1톤 초과~3톤 이하, 3톤 이상~8톤 이하, 8톤 초과~12톤 미만, 12톤 이상)별 속성값이 입력되어 있으므로, 교통주제도와 연계할 수 있는 위치적인 정보가 존재하지 않아서 GIS DB 생성이 불가능함
- KTDB 자료를 GIS DB로 생성할 수 있는지 검토결과는 <표 2-5>와 같음

<표 2-5> KTDB 자료의 GIS DB화 검토

KTDB 서비스 자료		내용	GIS DB 생성 가능 여부
지역간 여객 통행실태	총 통행량	· 2001년~2007년(1년 단위), 대존별 인구/수단통행량 · 속성정보 : 인구(천인), 수단통행(천통행), 1인당 수단통행(통행/인)	가능
	목적 통행량	· 2001년~2007년(1년 단위), 목적별 통행량(대존별) · 속성정보 : 목적(출근, 업무, 귀가, 등교, 쇼핑, 여가, 친지방 문, 기타)별 통행량(통행/일)과 목적별 통행비율(%)	가능
	수단통행량	·2001년~2007년(1년 단위), 수단별 통행량(대존별) ·속성정보 : 수단(승용차, 버스, 철도, 항공, 해운)별 통행량 (통행/일)과 수단별 통행비율(%)	가능
지역간 여객 통행실태	평균통행시간 및 거리분포	・1998년, 2001년~2005년(1년 단위) ・속성정보 : 특별/광역시, 시/군별 평균통행 거리 및 시간	가능
	목적별 지역간 여객OD	· 2001년~2007년(1년 단위), 2011년~2036년(5년 단위), 대존별 · 속성정보 : 목적(출근, 업무, 귀가, 등교, 쇼핑, 여가, 친지방 문, 기타)별 통행량과 전체OD 통행량(통행/일)	가능
	수단별 지역간 여객OD	·2001년~2007년(1년 단위), 2011년~2036년(5년 단위) ·속성정보 : 수단(승용차, 버스, 철도, 항공)별 통행량과 전체 OD 통행량(통행/일)	가능
	적재능력별 화물자동차 분석대수 및 비율	· 2001년, 2005년 적재능력별 화물자동차 분석대수 및 비율 · 속성정보 : 적재능력(1통 이하, 1톤초과~3톤이하, 3톤이상~8 톤이하, 8톤초과~12통미만, 12톤 이상)별 화물자동차대수 및 전체 화물차대수	불가능
	1일 대당 적재능력별 적재 및 공차통행특성		불가능
지역간 화물통행	적재능력별 비사업용 화물자동차 분석대수 및 비율	· 2001년, 2005년 적재능력별 화물자동차 분석대수 및 비율 · 속성정보 : 적재능력(1통 이하, 1톤초과~3톤이하, 3톤이상~8 톤이하, 8톤초과~12통미만, 12톤 이상)별 비사업용 화물자동 차대수 및 전체 화물차대수	불가능
	1일 대당 적재능력별 적재 및 공차통행특성 (비사업용)	· 2001년, 2005년 · 적재 및 공차통행율 · 적재/공차 시간율 및 거리율 · 평균적재율 및 적재효율 · 적재/공차 운행거리 및 운행시간	불가능
	지역별 비상업용 화물자동차 통행실태분석	· 2001년, 2005년, 대존별 · 분석대수 및 비율 · 적재 및 공차통행율 · 적재/공차 시간율 및 거리율 · 평균적재율 및 적재효율	가능

<표 2-5> KTDB 자료의 GIS DB화 검토(계속)

KTDB 서비스 자료		내용	GIS DB 생성 가능 여부	
지역간 화물통행	적재능력별 사업용 화물자동차 분석대수 및 비율	· 속성정보 : 석재능력(1통 이하, 1돈조과~3돈이하, 3돈이상~8 토이하 8톤초과~12톤미만 12톤 이상)병 비사업용 하묵자동		
	1일 대당 적재능력별 적재 및 공차통행특성 (사업용)	· 2001년, 2005년 · 적재 및 공차통행율 · 적재/공차 시간율 및 거리율 · 평균적재율 및 적재효율 · 적재/공차 운행거리 및 운행시간	불가능	
	지역별 상업용 화물자동차 통행실태분석	 2001년, 2005년, 대존별 분석대수 및 비율 적재 및 공차통행율 적재/공차 시간율 및 거리율 평균적재율 및 적재효율 	가능	
	품목별 기종점 화물 물동량	・2001년~2007년(1년 단위), 2011년~2036년(5년 단위) ・속성정보 : 품목별(33개) 화물 물동량(톤/년)	가능	
	수단별 기종점 화물 물동량	· 2001년~2007년(1년 단위), 2011년~2036년(5년 단위) · 속성정보 : 수단(도로, 철도, 항공)별 화물 물동량(톤/년)	가능	
	화물자동차 기종점 통행량	· 2001년~2007년(1년 단위), 2011년~2036년(5년 단위) · 속성정보 : 화물차별(2.5톤이하, 2.5톤초과~8.5톤이하, 8.5 톤초과)별 통행량 및 전체통행량(대/일)	가능	
광역권 여객통행	통행목적/수단별 통행수단분포	· 2001년 · 속성정보 : 권역별 통행목적(출근, 등교, 귀가, 업무, 배웅, 쇼핑, 여가오락친교, 기타)에 따른 수단(도보, 승용차, 시내 좌석마을, 기타버스, 고속시외버스, 지하철전철철도,택시, 오토바이, 자전거, 기타)별 통행량(통행/일)	가능	
	목적별 대존간 기종점 통행량	· 2001년, 2006년 · 속성정보 : 권역별(부산울산권, 대구권, 광주권, 대전권, 전주권) 통행목적(출근, 등교, 귀가, 업무, 쇼핑, 여가오락친교, 기타)에 대한 기종점 통행량(통행/일) · 존구분 : 외부존은 시도단위이며 내부존은 시/군/구 단위임	가능	
	수단별 대존간 기종점 통행량	· 2001년, 2006년 · 속성정보 : 권역별(부산울산권, 대구권, 광주권, 대전권, 전 주권) 통행수단(도보, 승용차, 시내좌석마을버스, 기타버스, 지하철전철철도, 택시, 기타)에 대한 기종점 통행량(통행/일) · 존구분 : 외부존은 시도단위이며 내부존은 시/군/구 단위임	가능	
	목적별 기종점 통행량	 2001년, 2003년, 2006년, 2011~2036년(5년 단위) 속성정보 : 권역별(부산울산권, 대구권, 광주권, 대전권, 전주권) 통행목적(출근, 등교, 귀가, 업무, 쇼핑, 여가오락친교, 기타)에 대한 기종점 통행량(통행/일) 존구분 : 외부존은 시도단위이며 내부존은 읍면동 단위임 	가능	

<표 2-5> KTDB 자료의 GIS DB화 검토(계속)

KTDB 서비스 자료		내용	GIS DB 생성 가능 여부
광역권 여객통행	목적별 기종점 통행량		
	수단별 기종점 통행량	· 2001년, 2003년, 2006년, 2011~2036년(5년 단위) · 속성정보 : 권역별(부산울산권, 대구권, 광주권, 대전권, 전주 권) 통행수단(도보, 승용차, 시내좌석마을버스, 기타버스, 지하 철전철철도, 택시, 기타)에 대한 기종점 통행량(통행/일) · 존구분 : 외부존은 시도단위이며 내부존은 읍면동 단위임	가능
	물동량	· 2001년 · 월별입하량 비중, 월별 출하량 비중, 1개월간 입하건당 평균입하 량, 1개월간 입하건당 평균출하량	가능
	화물자동차 통행실태	·사업체당 평균 보유 또는 이용대주, 1일 대당 적재능력별 적재 및 공차통행률, 적재능력별 적재/공차 시간율 및 거리율, 적재 능력별 적재효율 및 평균 적재율	가능
710101	권역별 물동량 및 통행량	·품목별 물동량, 톤급별 화물자동차 통행량	가능
광역원 화물통행	톤급별 지역별 화물자동차 기종점 통행량	· 2001년, 2003년, 2006년~2031년(5년 단위) · 속성정보 : 권역별(부산울산권, 대구권, 광주권, 대전권) 톤급별 (1톤미만, 1톤-8톤미만, 8톤이상) 화물자동차대수(대/일) · 광역권 내부(시/구)단위	가능
	톤급별 지역별 화물물동량 기종점 통행량	· 2001년, 2003년, 2006년~2031년(5년 단위) · 속성정보 : 권역별(부산울산권, 대구권, 광주권, 대전권) 7개 품 목별(농수임산품, 광산품, 금속기계공업품, 화학공업품, 경공업 품, 잡공업품, 기타품) 물동량(톤/년) · 광역권 내부(시/구)단위	가능
교통경제 지표	교통혼잡비용	· 1991년~2007년(1년 단위) · 속성정보 : 지역별(특별시 및 광역시)와 차종별(승용차, 버스, 화물차, 계), 도로별(고속도로, 국도, 지방도, 계)교통혼잡비용	가능
	토지면적	・2004년~2007년(1년 단위) ・속성정보 : 전국 시군구별 토지면적	가능
	총조사가구수	・1970년~2005년(5년 단위) ・속성정보 : 전국 읍면동별 총조사가구수	가능
	총조사인구수	・1970년~2005년(5년 단위) ・속성정보 : 전국 읍면동별 총조사인구수	가능
사회경제 [*] 지표	경제활동인구	· 2002년~2008년(1년 단위) · 속성정보 : 전국 시도별 경제활동인구, 비경제활동인구	가능
	산업별 종사자수	・1994년~2007년(1년 단위) ・속성정보 : 전국 시군구별 사업별(27개) 사업체수, 종사자수	가능
	인구밀도	・1992년~2007년(1년 단위) ・속성정보 : 전국 시군구별 인구밀도	가능
	지역내총생산 (GRDP)	· 2006년, 2007년 · 속성정보 : 전국 시도별 경상가격, 불변가격	가능

나. 국가교통DB(KTDB) 제공 자료의 가공 및 GIS DB 생성

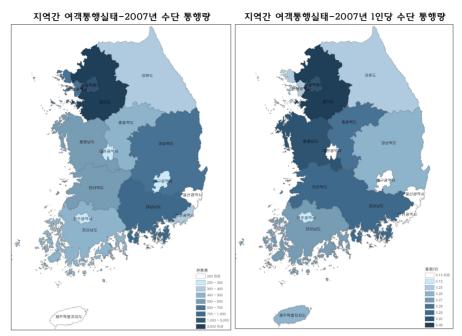
- KTDB 자료의 GIS DB 생성 검토결과에 따라 교통주제도와 자료를 연계하여 GIS DB 를 생성하여 교통주제도의 활용성을 제고할 수 있음
- KTDB 자료가 지역별(대존별)로 구성되어 있는 경우에는 교통주제도의 행정경계 중 시/도 데이터를 기반으로 다양한 GIS DB를 생성함
- KTDB 자료가 기종점별로 구성되어 있는 경우에는 교통주제도의 행정경계를 기반으로 구축한 센트로이드와 OD 레이어를 바탕으로 GIS DB를 생성함

1) 지역간 여객통행실태

○ 총 통행량

- 지역적 범위 : 16개 시도

- 시간적 범위 : 2001년 ~ 2007년, 1년 단위


- 속성정보 : 인구, 수단통행량, 1인당 수단통행량

- 구축방법

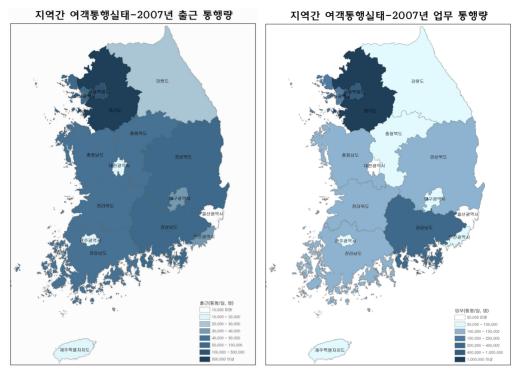
- · KTDB자료는 연도별로 시트가 구분되어 인구, 수단통행량, 1인당 수단통행량 값이 입력되어 있음
- · 연도별로 구성된 시트의 데이터를 "연도인구", "연도수단통행", "연도인당통행"필드 를 생성하여 2001년부터 2007년까지의 시트를 하나의 시트로 통합하여 정리함
- · 정리한 시트에 "ID" 필드를 추가하여 대존에 해당되는 행정구역 코드값을 입력하여 교통주제도의 행정구역 시/도 코드값과 연결시킴

<표 2-6> 대존별 행정구역 코드

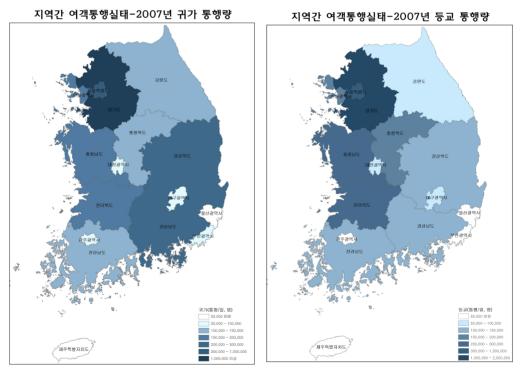
 대존	행정구역 코드	대존	행정구역 코드
서울특별시	11	강원도	32
부산광역시	21	충청북도	33
대구광역시	22	충청남도	34
인천광역시	23	전라북도	35
광주광역시	24	전라남도	36
대전광역시	25	경상북도	37
울산광역시	26	경상남도	38
경기도	31	제주특별자치도	39

<그림 2-8> 지역간 여객통행실태 GIS Map(총 통행량)

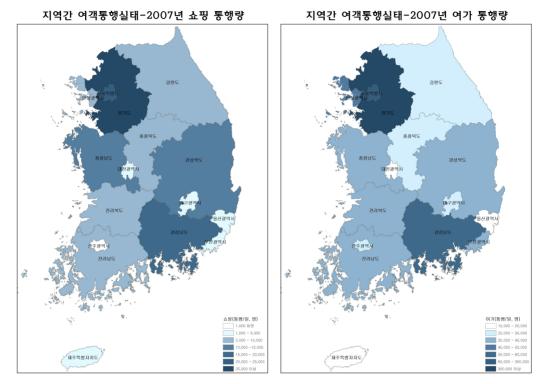
ㅇ 목적 통행량


- 지역적 범위 : 16개 시도

- 시간적 범위 : 2001년 ~ 2007년, 1년 단위


- 속성정보 : 목적(출근, 업무, 귀가, 등교, 쇼핑, 여가, 친지방문, 기타)별 통행량 (통행/일)과 목적별 통행비율

- 구축방법

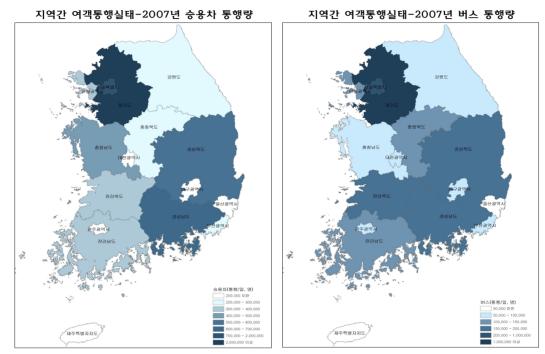

- · KTDB자료에는 연도별로 시트가 구분되어 목적별 통행량과 목적별 통행비율의 값 이 두 개의 표로 구성되어 있음
- · 연도별로 시트가 구분되어 두 개의 표로 구성된 목적별 통행량, 목적별 통행비율의 값을 "출근", "업무", "귀가", "등교", "쇼핑", "여가", "친지방문", "기타", "출근비율", "업무비율", "귀가비율", "등교비율", "쇼핑비율", "여가비율", "천지방문율", "기타비율"필드를 생성하여 정리한 값을 입력하고, 연도별로 시트를 분리하여 정리함
- · 정리한 시트에 "ID" 필드를 추가하여 대존에 해당되는 행정구역 코드값을 입력하여 교통주제도의 행정구역 시/도 코드값과 연결시킴

<그림 2-9> 지역간 여객통행실태 GIS Map(목적 통행량(출근, 업무))

<그림 2-10> 지역간 여객통행실태 GIS Map(목적 통행량(귀가, 등교))

<그림 2-11> 지역간 여객통행실태 GIS Map(목적 통행량(쇼핑, 여가))

○ 수단 통행량


- 지역적 범위 : 16개 시도

- 시간적 범위 : 2001년 ~ 2007년, 1년 단위

- 속성정보 : 수단(승용차, 버스, 철도, 항공, 해운)별 통행량(통행/일)과 수단별 통행비율

- 구축방법

- · KTDB자료에는 연도별로 시트가 구분되어 수단별 통행량과 수단별 통행비율의 값이 두 개의 표로 구성되어 있음
- · 연도별로 시트가 구분되어 두 개의 표로 구성된 수단별 통행량, 수단별 통행비율의 값을 "승용차", "버스", "철도", "항공", "해운", "승용_비율", "버스_비율", "철도 _ 비율", "항공_비율", "해운_비율"필드를 생성하여 정리한 값을 입력하고, 연도별로시트를 분리하여 정리함
- · 정리한 시트에 "ID" 필드를 추가하여 대존에 해당되는 행정구역 코드값을 입력하여 교통주제도의 행정구역 시/도 코드값과 연결시킴

<그림 2-12> 지역간 여객통행실태 GIS Map(수단 통행량(승용차, 버스))

<그림 2-13> 지역간 여객통행실태 GIS Map(수단 통행량(철도, 항공))

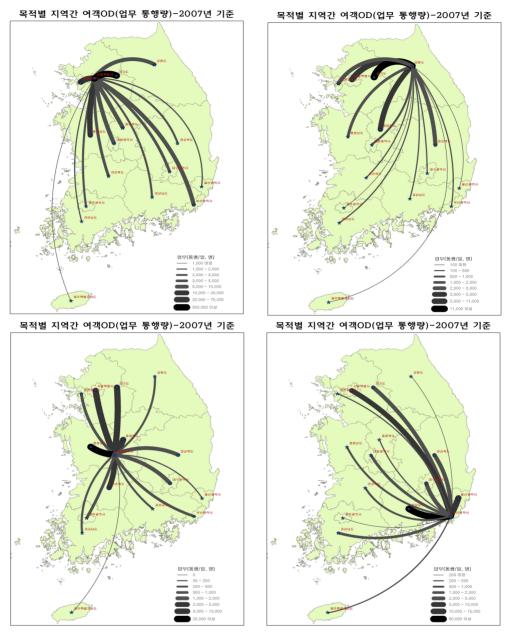
○ 목적별 지역간 여객 OD

- 지역적 범위 : 16개 시도

- 시간적 범위 : 2001년 ~ 2007년(1년 단위), 2011년 ~ 2036년(5년 단위)

- 속성정보 : 목적(출근, 업무, 귀가, 등교, 쇼핑, 여가, 친지방문, 기타)별 통행량 (통행/일)과 전체OD통행량

- 구축방법


- · KTDB자료에는 연도별로 시트가 구분되어 목적(전체통행량, 출근, 업무, 귀가, 등 교, 쇼핑, 여가, 친지방문, 기타)별로 16×16 매트릭스로 구성되어 있는데, 이를 하나의 표로 정리함
- · "OD", "출근", "업무", "귀가", "등교", "쇼핑", "여가", "친지방문", "기타"필드를 생성하여 정리한 값을 입력하고, 연도별로 시트를 분리하여 정리함
- · 정리한 시트의 "OD" 필드는 기·종점 교통존ID의 조합으로 구성(예:서울→부산 =1-2)되며, 이는 OD 레이어와 연결하기 위한 연결키 값임

<KTDB 자료 원본>

<KTDB 자료 정리>

<그림 2-14> KTDB 자료의 원본 및 가공

<그림 2-15> 지역간 여객통행실태 GIS Map(목적별 지역간 여객OD)

○ 수단 지역간 여객 OD

- 지역적 범위 : 16개 시도

- 시간적 범위 : 2001년 ~ 2007년(1년 단위), 2011년 ~ 2036년(5년 단위)

- 속성정보 : 수단(승용차, 버스, 철도, 항공, 해운)별 통행량(통행/일)과 전체OD통 행량

제3장 교통시설물 조사 및 교통주제도 구축 공정 개선 연구

제1절 상시조사체계 구축 방안

제2절 유관기관 협조체계 구축 방안

제3절 조사/구축 공정 개선 방안

제3장 교통시설물 조사 및 교통주제도 구축 공정 개선 연구

제1절 상시조사체계 구축 방안

1. 개요

- 기존 교통시설물 조사와 다른 특별한 체계가 아닌 기존 공정을 개선하여 효율성을 높이고 교통주제도의 갱신주기를 단위작업별로 단축하는 것을 목표로 함
- 상시조사란 기존 1년 단위 조사 및 DB구축 공정을 1개월 또는 분기별로 수시로 진행 하여 자료의 최신성을 높이고 각 단계별로 교통주제도를 갱신하여 사용자에게 제공하 는 것을 의미함
- 유관기관 협조체계 구축 및 조사/구축 공정 개선 연구를 통해서 정립된 조사방안을 구체적으로 일정화하여 사업기간 동안 조사 및 구축 업무를 설계함

2. 상시조사체계(안)

- 상시조사의 주기는 1개월 혹은 1분기를 기준으로 하며, 각 기간에 적합한 조사일정을 수립하였음
- 조사주기는 1개월 혹은 1분기에 국한된 것이 아니라 기존의 조사를 수행함과 동시에 또다른 조사공정을 수행할 수 있도록 각 개별 조사단위로 운영하는 것을 원칙으로 함
- 각 주기별 상시조사 및 교통주제도 구축은 기간과 대상의 범위가 다른 것을 제외하고 는 동일한 공정으로 수행됨

가. 상시조사체계(안) - 1개월 단위

- 1개월 단위 조사의 총 투입일수는 22일 기준으로 함
- 주로 계획보다 앞서 준공되는 상위등급의 도로, 즉 고속국도 및 일반국도 단일 노선 에 대한 조사에 적합함

1) 조사계획 수립

- 조사계획 수립에는 조사일정 확정, 조사대상도로에 대한 사전자료 구축 등 공정이 포 함됨
- 도로등급별, 조사연장별, 지역별 특성을 조사대상도로에 대한 공간정보 구축과 함께 입력하여 조사지원시스템에서 기계적으로 기본일정계획을 수립할 수 있도록 함
- 수립된 임의의 일정을 확인하여 조사팀의 운영계획 등을 고려하여 재구성하고 조사를 수행함

2) 조사원장 작성 및 출력

- 현장조사시스템의 특성을 조사대상별로 반영하여 조사원장의 작성 및 출력여부를 결 정함
- 현장조사시스템은 기존의 조사방법에 따라 종이도면을 활용하는 방식과 전자야장 방 식으로 구분됨
- 조사일정이 짧고 비교적 대상의 개수가 적은 조사를 수행하는 1개월 공정에는 조사원 장을 직접 출력하지 않는 조사시스템이 적합함
- 조사원장을 작성하지 않고 교통주제도를 기반으로 전체 조사를 수행한 후 공간DB를 갱신하는 방법으로 조사를 수행함

3) 조사결과 수집 및 반영

- 현장조사시스템에서 수집되는 조사결과는 GPS를 이용한 위치정보(지점, 선형)와 전 자야장에 기입된 각 공간객체에 대한 속성정보임
- GPS 위치정보 및 속성정보(이미지 파일 형태)는 단위조사별로 유일식별자를 부여하 여 별도로 저장하고 이를 기반으로 교통주제도를 갱신함
- 선형이 아닌 지점 형태의 조사는 조사결과를 그대로 ArcGIS Server에서 실시간 갱신 하는 방법을 활용함
- 선형 조사결과의 경우, 교통주제도에 직접 반영하기 전에 1차 검수를 거쳐 입력하여 자료의 무결성을 확보함

4) 조사 및 구축 결과 검수

- 조사 및 구축 일정이 짧기 때문에 조사를 수행하고 이를 검토한 후 현장검수를 수행 하는 방법은 적합하지 않음
- 현장조사시 촬영된 주요지점 및 시설물에 대한 사진(지오태그 이미지) 및 운행 동영 상을 내업으로 확인하여 조사결과를 검수하는 방법을 활용함
- 이후 1분기 또는 반년을 기준으로 수행된 현장조사에 대해 일괄적으로 현장검수를 수 행하여 조사결과의 신뢰도를 검증함

5) 조사 및 구축 최종산출물 저장

- 조사결과 및 조사/구축 공정에서 생산되는 모든 산출물은 조사에 부여된 유일식별자 (조사ID)를 부여하여 별도로 저장함
- 조사를 통해 수집된 GPS 관련자료 및 조사원장은 모두 디지털화하여 DB서버에 저장 하는 방식으로 관리함

<표 3-1> 1개월 단위 상시조사일정(안)

<u></u> 과업순서	공정내역	소요일수(일)	투입인력(명)
	조사 자료 수집 및 구축	3	2
1주차	조사대상별 조사일정 수립	1	1
	조사장비 및 차량 준비	1	1
 2주차	대상별 현장조사 수행	5	-
3주차	교통시설물 조사결과 검수	1	1
	조사결과를 반영한 교통주제도 갱신	4	2
4주차	교통주제도 검수	2	1
	교통주제도 배포버전 작성 및 갱신내역 공고	3	1

가. 상시조사체계(안) - 1분기 단위

- 1분기 단위의 총 투입일수는 3개월(22일) 기준 66일임
- 지역별/분기별 준공도로에 대한 조사나 ITS 표준노드링크, 새주소 도로망 DB와 같이 한번에 조사물량이 비교적 많은 업무에 적합한 일정임
- 조사팀을 다수 운영한다고 가정할 때 1분기 단위 조사를 주로 수행하는 팀을 운영하고 조사대상이 발생할 때마다 작업일정을 고려하여 1개월 단위 조사를 1개 팀 정도를 운영하여 수행하는 것이 효율적일 것으로 판단됨

1) 조사계획 수립

- 조사계획 수립에는 조사일정 확정, 조사대상도로에 대한 사전자료 구축 등 공정이 포 함됨
- 1개월 단위의 조사보다 조사물량이 많고 대상범위가 넓기 때문에 실제로 조사에 투입되는 시간을 여유있게 고려해야 함
- 총 3개월의 기간 중 조사가 차지하는 일정비중은 5주 정도가 적합할 것으로 판단됨

2) 조사원장 작성 및 출력

- 조사대상이 많고 공간DB에 입력된 조사자료 만으로 조사운영에 문제가 있을 경우에 조사원장을 지역별 혹은 단위도엽별로 출력하여 참고함
- 조사결과의 입력은 기본적으로 현장조사시스템에서 입력하는 것을 원칙으로 하고 참 고내용을 수기로 기록하여 스캔 후 자료화 하고 참고하는 방법을 활용함

3) 조사결과 수집 및 반영

- 현장조사시스템에서 수집되는 조사결과는 GPS를 이용한 위치정보(지점, 선형)와 전 자야장에 기입된 각 공간객체에 대한 속성정보임
- GPS 위치정보 및 속성정보(이미지 파일 형태)는 단위조사별로 유일식별자를 부여하 여 별도로 저장하고 이를 기반으로 교통주제도를 갱신함
- 선형이 아닌 지점 형태의 조사는 조사결과를 그대로 ArcGIS Server에서 실시간 갱신 하는 방법을 활용함

4) 조사 및 구축 결과 검수

- 조사 대상이 비교적 많은 경우이기 때문에 조사 일정 마지막에 각 지역별로 일정비율 현장검수를 수행하는 것이 바람직함
- 이외의 조사내용에 대해서는 주요지점 및 시설물에 대한 사진(지오태그 이미지) 및 운행 동영상을 내업으로 확인하여 검수하는 방법을 활용함
- 매년 2회 수준으로 진행되는 전체 검수에서 기존 현장검수 대상은 제외하고 이외의 조사결과에 대한 검수를 수행함
- 교통주제도 구축 결과 검수는 전수검수를 원칙으로 함
- 상시조사 및 구축공정과 별도로 사업연도 기준(1년 단위)으로 교통주제도 검수팀을 운영하여 조사결과의 반영 및 교통주제도 구축결과를 검토하고 이외의 주제도 수정보 완사항을 추출함

5) 조사 및 구축 최종산출물 저장

- 조사결과 및 조사/구축 공정에서 생산되는 모든 산출물은 조사에 부여된 유일식별자 (조사ID)를 부여하여 별도로 저장함
- 조사를 통해 수집된 GPS 관련자료 및 조사원장은 모두 디지털화하여 DB서버에 저장 하는 방식으로 관리함

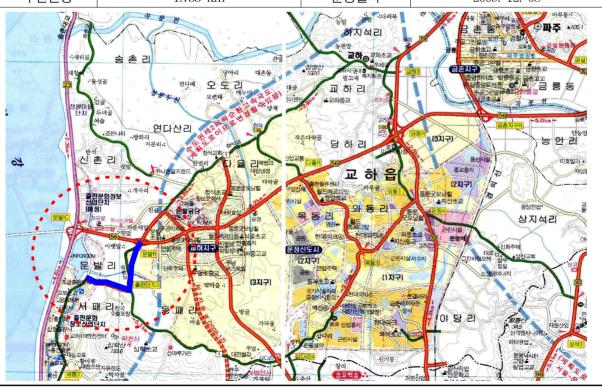
<표 **3-2> 1**분기 단위 상시조사일정(안)

일정순서	추진내역	소요일수	투입인력
1	조사 자료 수집 및 구축	7	2
2	조사대상별 조사일정 수립	1	1
3	조사장비 및 차량 준비	3	1
4	대상별 현장조사 수행	25	_
5	교통시설물 조사결과 검수	4	1
6	조사결과를 반영한 교통주제도 갱신	20	-
7	교통주제도 검수	3	2
8	교통주제도 배포버전 작성 및 갱신내역 게시	3	1

주: 1) 현장조사팀은 조사대상의 개수 및 연장, 그리고 지역별 분포에 따라 투입함

²⁾ 교통주제도 갱신은 조사물량 및 조사결과에 따라 적절하게 투입함

3. 상시조사체계를 적용한 시범조사 수행


- 상시조사체계를 기반으로 시범대상에 대한 조사를 수행하고 향후 전체 조사공정에 반영 가능여부를 검토함
- 유관기관 협조체계 및 조사지원체계가 연구내용을 바탕으로 완전히 구축되지 않은 시점 이므로 전체적인 공정의 시연을 그 목적으로 함
- ㅇ 대상도로는 연구원에서 인접하고 비교적 조사 구간이 짧은 도로를 선택함

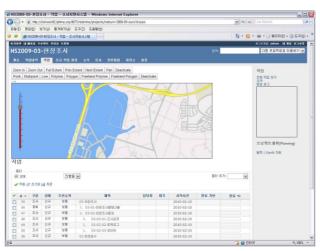
가. 조사자료 수집 및 구축

○ 유관기관 협조자료는 준공도로 형태를 기준으로 임의로 작성하였으며 협조형태는 문 서파일(하글 문서)로 정의함

<표 3-3> 시범조사 수행 구간 입력자료

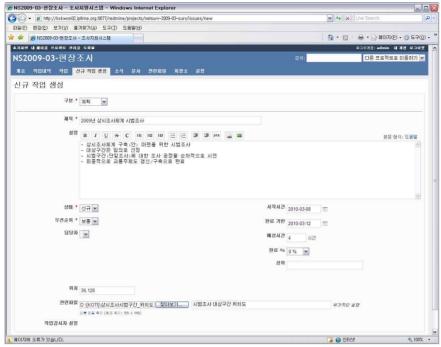
	준공ID	파주001	시점	파주시 교하읍 문발리
	공사명칭	문발IC~출판단지간 도로	종점	파주시 교하읍 서패리
	도로등급	시도	왕복차선수	3/3
•	구간연장	1.733 km	준공일자	2009. 12. 08

나. 조사대상별 조사일정 수립

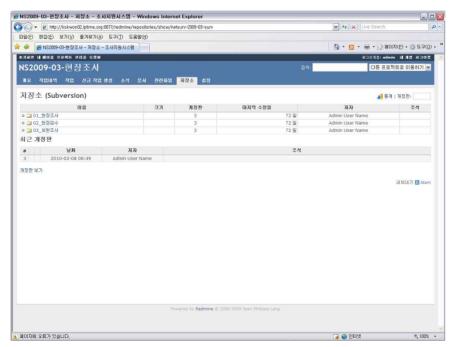

- 시범조사를 수행하기 위해 조사대상을 도로선형 및 도로시설물로 분류하고 이에 따라 조사시스템을 달리하여 각각 조사를 수행함
 - 도로 : 도로선형 및 교차점, 차선수, 제한속도 등의 속성정보 조사
 - 도로시설물 : 교량, 터널, 신호등, 횡단보도 등 시설물 위치 및 속성정보 조사
- 각 대상별로 1일씩 조사를 수행함

다. 조사장비 및 차량 준비

- 조사장비는 노트북 및 PMP, 그리고 스마트폰을 활용하여 각 대상물에 대하여 조사를 수행함
 - 도로 : 차량 및 노트북, PMP
 - 도로시설물 : 차량 및 도보, 스마트폰

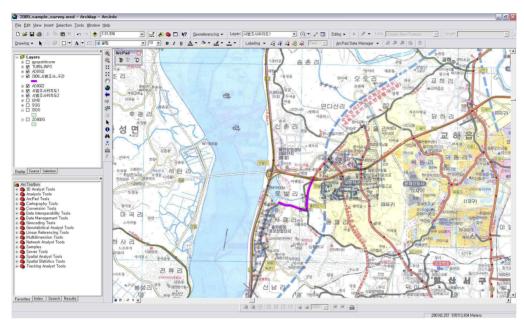

라. 시범조사 수행

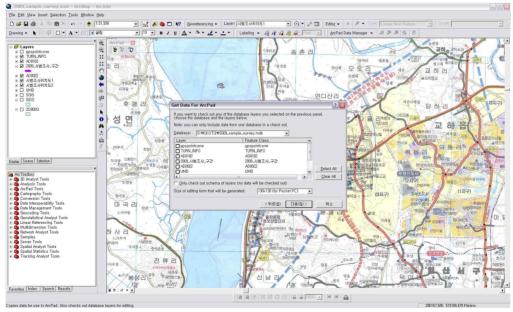
- 조사대상에 대한 시범조사를 수행함
- 조사검수 및 활용을 위해 시범조사 대상 도로 및 시설물에 대한 위치 및 속성정보를 수집하고 시설물에 대한 지오태그 이미지를 촬영함
- 1) 조사지원시스템을 통한 조사업무 생성 및 관리



<그림 3-1> 조사지원시스템 조사업무 생성화면

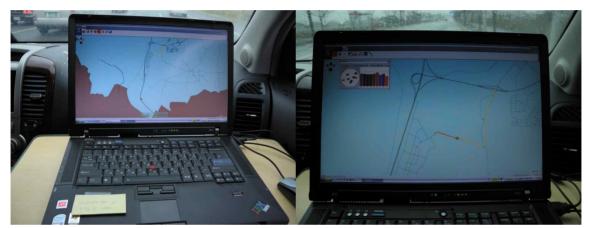
- 조사지원시스템은 개별 조사업무에 대한 생성 및 현황관리를 위해 활용함
- 조사대상 도로 및 시설물이 수집되면 해당 위치에 조사대상을 표기하고 관리정보를 입력


<그림 3-2> 조사 업무 정보 입력


<그림 3-3> 조사 관련 정보 저장

2) 조사자료 작성

○ 조사를 수행하기 위한 위치 및 속성에 대한 사전 조사자료를 입력하여 조사시스템(노트북, PMP, 스마트폰 등)에 활용 가능한 형태로 변환함


<그림 3-4> ArcMap을 활용한 조사지점 자료 생성

<그림 3-5> ArcMap을 활용한 ArcPad 입력자료 생성

3) 현장조사

- 생성한 조사입력자료를 다양한 장비에 저장하고 시범구간에 대한 조사를 수행함
- 기존 조사시스템인 노트북으로 해당구간을 조사한 후 PMP 장비를 이용하여 동일하게 조사를 수행함
- 차량이나 도보를 이용하여 조사를 수행할 수 있으며 차량 및 노트북을 이용하는 조사 와 유사하게 조사수행이 가능함을 확인함

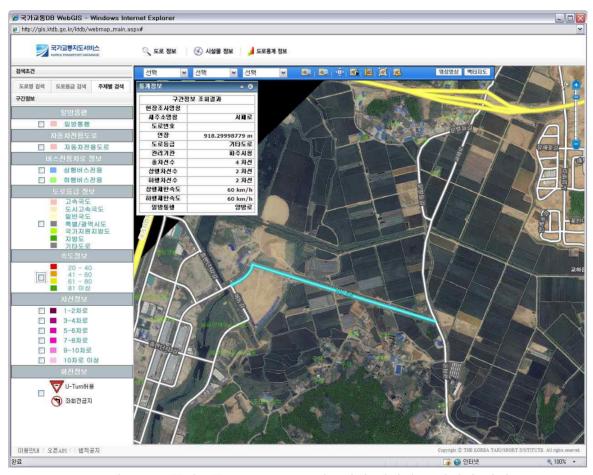
<그림 3-6> 노트북을 이용한 현장조사

- PMP 및 스마트폰을 조사에 활용할 경우, 레벨 1 수준의 도로망, 시설물의 조사에 효 과적으로 활용할 수 있음
- 기기에 기본적으로 장착된 와이파이(Wi-Fi), 3G 인터넷 등 무선인터넷을 활용하여 실시간으로 조사결과를 수집하고 편집작업을 수행할 수 있음

<그림 3-7> PMP 및 스마트폰을 이용한 현장조사

4) 교통 시설물 이미지 수집

- 사진 촬영 지점의 GPS 위치정보가 저장되는 이미지 파일인 지오태그 사진을 시설물 조사에 활용함
- 지오태그 이미지는 조사시스템 및 조사지원시스템에 직접 입력하여 실시간으로 Web GIS에 게시하는 것이 가능함


<그림 3-8> 지오태그를 활용한 교통시설물 조사 및 촬영된 이미지

<그림 3-9> 실제 촬영 사진(지오태그 이미지)

5) 교통주제도 반영

- 조사결과는 내업을 통해 교통주제도에 반영함
- 반영된 교통주제도는 Web GIS 시스템에서 확인 가능함

<그림 3-10> 국가교통DB Web GIS 시스템에 갱신된 조사결과 반영

제2절 유관기관 협조체계 구축 방안

1. 개요

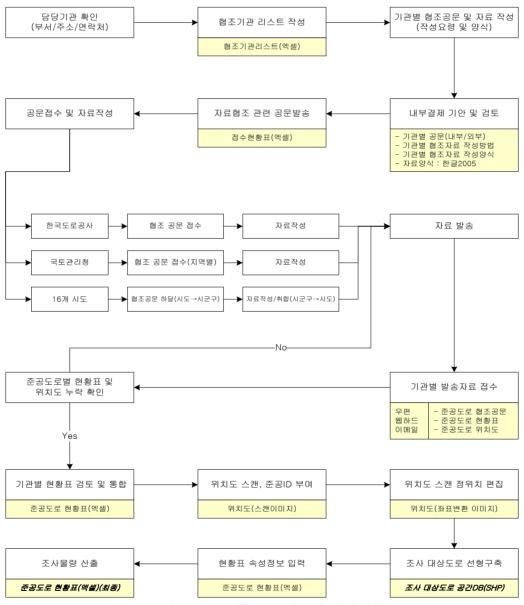
- 교통시설물 조사의 시작은 조사대상(도로, 철도, 교통시설물)에 대한 원시자료 수집 에서 시작함
- 전국의 모든 도로망을 매년 주기적으로 조사할 수 없는 상황에 의해 매년 신설 및 변 경되는 교통시설물에 대한 조사를 조사 참조자료를 바탕으로 수행함
- 이중 각 시설물의 건설 및 관리기관을 통해 협조되는 참고자료는 그 정확도가 높고 주기적으로 자료수집이 가능하다는 장점이 있음
- 이외에도 관련기관의 정보화 사업을 통해 생성되는 각종 자료를 조사 및 DB구축의 기초자료로 활용하여 효율적이고 생산적인 교통주제도 구축이 가능함
- 기존의 자료협조는 관행적으로 수행되었던 지금까지의 공정을 답습해왔으나, 좀 더체계적으로 각 기관별 구축자료를 정리하고 자료의 생성 및 관리 등 공정을 분석하여효율적이고 시스템적으로 자료수집이 가능한 방안을 연구하고자 함
- 참조 가능한 유관기관 생산자료의 종류, 생성에서 관리까지 공정 및 협조방안을 파악 하여 교통시설물 조사에 적극적으로 활용할 수 있는 방안을 제시함

2. 교통시설물 조사 관련 유관기관 및 관련자료 검토

가. 기존 협조기관별 관련자료 검토

- 기존의 도로 및 철도, 교통시설물에 대한 조사원시자료 확보를 위한 자료협조는 주로 공문을 통한 협조 방식으로 일관되어 왔음
- 협조기관에서 어떠한 형태의 자료를 수집하고 보관하고 있는지에 대한 정보가 부족하 여 협조체계를 효율적으로 구축할 수 없었음
- 대표적인 사례로 매년 수집되고 있는 준공도로 현황의 경우, 각 협조기관의 원시자료 를 그대로 활용하는 것이 아닌 요청양식에 따른 새로운 자료의 작성을 기초로 하고 있기 때문에 담당자들에게 효율적으로 필요한 자료를 수집하는데 어려움이 있음

- 이에 기존의 자료협조 공정의 문제점을 파악하고 각 기관별 보유자료를 확인하여 효 율적인 자료수집이 가능한 체계를 제시하고자 함
- 유관기관별 관련자료의 구체적인 내용은 <표 3-4>와 같음


<표 3-4> 유관기관별 자료목록

 자료명칭	자료내용	협조기관	협조형태	협조여부
준공도로 현황자료	기준년도 준공도로 현황자료	한국도로공사 국토관리청 16개 시도	현황표 위치도	가능
ITS 표준노드/링크 전자지도	ITS 표준노드/링크 갱신자료	국가교통정보센터 (홈페이지)	전자지도	온라인 배포
새주소 도로망 전자지도	새주소 도로명 전자지도	행정안전부	전자지도	가능
NGIS 수치지도	국가기본 수치지도	국토지리정보원	전자지도	유상구매
NGIS 기본지리정보	부문별 기본지리정보 (도로, 철도)	국토지리정보원	전자지도	유상구매

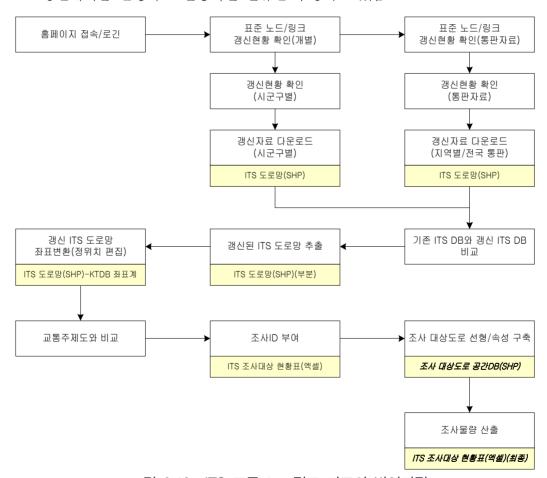
- 위에 열거한 기관 및 자료는 교통시설물 조사 및 교통주제도 구축을 위한 기초적인 자료에 해당됨
- 일반적으로 각 교통시설물 및 도로, 철도는 관리기관에서 1차적으로 관련자료를 생성 하고 있음
- 관리기관에서 생산된 관련자료를 직접 협조 받는 것이 가장 효율적이지만 협조 불가 한 경우가 있고 이런 경우, 정보화시스템이 구축되어 있는지를 확인하고 해당 시스템 에서 간접적으로 자료를 협조 받는 방안도 고려해야 함
- 각 기관별 정보시스템의 직접적인 연계는 불가하더라도 시스템에서 기본적으로 활용하는 자료를 주기적으로 제공받아 조사를 위한 참고자료로 활용할 수 있다면 효율적인 조사가 가능함

1) 준공도로 현황자료

- 기존 조사 원시자료 중 가장 체계적으로 수집되고 있는 자료임
- 국토해양부 협조를 통해 공문을 발송하고 각 지자체 담당자들이 직접 작성한 현황표 및 위치도를 수집하여 준공도로 현황을 자료화하여 조사를 수행함
- ㅇ 수집되는 자료는 현황표와 위치도로 구성됨

<그림 3-11> 준공도로 자료의 반영과정

- 준공도로 자료협조의 문제점은 다음과 같음
 - 구속력이 없는 협조자료 요청으로 인해 제공을 하지 않는 기관이 발생함
 - 준공도로 위치파악이 불가능한 축척 또는 형태(지적도 등)의 위치도가 수집되는 경 우가 다수 있음
 - 현황표와 위치도를 각각 일대일로 정의하여 조사원장에 사용가능한 형태로 자료화하는데 많은 시간과 노력이 필요함
 - 상시조사 등 즉각적인 DB갱신을 위한 조사에 활용하기에는 수집기간이 불규칙함

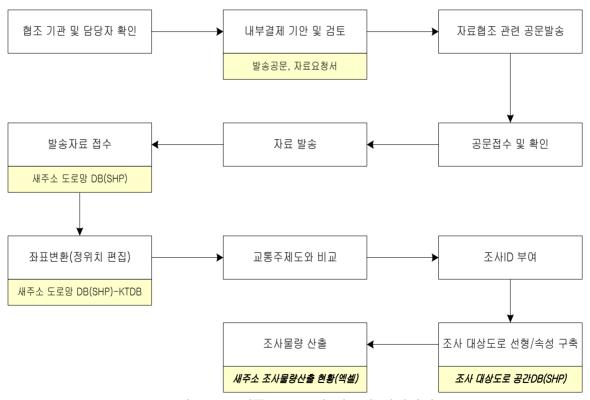

<표 3-5> 준공도로 협조자료-현황표(예)

공 사 명	노선명	시점명	종점명	구간거리 (km)	차선수	준공일	개통일	비고
두포-천천간		경기 파주	경기 파주					
도로확장	국37호	파평 두포	적성 두지	10.64	2/2	'08.08.20	'06.12.31	신설
및 포장공사		425-20	61-30					

<그림 3-12> 준공도로 협조자료-위치도(예)

- 2) ITS 표준 노드/링크 전자지도(국토해양부)
 - ITS 표준 노드/링크 전자지도는 최초에 교통주제도를 기반으로 구축되어 기본적인 형 태 및 속성이 매우 유사함
 - 이로 인해 두 자료는 상호환류하여 보완 및 갱신하도록 되어 있음
 - ITS 표준 노드/링크는 표준 노드링크 관리시스템을 구축하여 각 등급별 도로관리기관 이 신설 및 변경이력을 직접 입력하고 이를 승인하는 방식으로 DB를 갱신함
 - ㅇ 원시자료의 형태는 다음과 같음
 - 자료형식 : ESRI Shape files
 - 테이블 구성: ITS 표준 노드/링크 데이터 설계에 따름
 - ㅇ 지속적인 시스템 개선을 통해 사용자의 활용성을 높이는데 노력하고 있음
 - 구축범위가 교통주제도와는 상이하여 갱신내역을 교통주제도에서 ITS 표준노드/링크 로 갱신내역을 반영하는 일방적인 환류만 수행되고 있음

<그림 3-13> ITS 표준 노드링크 자료의 반영과정



<그림 3-14> 국가교통정보센터

<그림 3-15> ITS 표준 노드링크 관리시스템

- 3) 새주소 도로명 전자지도(행정안전부)
 - 기존 지번중심의 주소체계를 도로를 중심으로 전환한 새주소사업을 통해 구축된 성과 물 중 도로망과 관련된 DB를 의미함
 - 자료의 갱신주기가 불규칙하며 속성정보의 구성에 차이가 있으나 도로DB의 세밀도가 높고 비교적 수월하게 자료수집이 가능한 장점이 있음
 - 자료갱신이 시도별로 이루어지며 전자지도의 경우에는 별도의 신청절차를 거쳐야 협 조가 가능함
 - 원시자료의 형태는 다음과 같음
 - 자료형식 : ESRI Shape files
 - 테이블 구성: 새주소 전자지도 데이터 설계에 따름
 - 기존에는 주로 교통주제도 링크의 새주소명칭을 입력하는데 활용하였으나 레벨 1 교 통주제도 구축이 단계적으로 완료되면 신설 및 변경도로를 조사하는데 활용이 가능할 것으로 판단됨

<그림 3-16> 새주소 도로명 자료의 반영과정

<그림 3-17> 새주소안내시스템

4) NGIS 수치지도

- 국토지리정보원에서 구축/판매하고 있는 국가기본 수치지도이며 모든 주제도의 기초 가 되는 자료임
- 현재는 자료의 용량에 따라 유상으로 판매하고 있으며 자료구축 주기는 지도의 축척 에 따라 상이함
- 선형의 위치정확도가 높아 도로, 철도의 공간정보 구축에 기초자료로 활용도가 높음
- ㅇ 원시자료의 형태는 다음과 같음
 - 자료형식 : DXF(CAD, ver 1.0), NGI(ver 2.0)
 - 테이블 구성: 객체별 레이어 구성 및 NGI 표준형식에 따라 구축
- NGIS 수치지도는 위치정확도가 높고 공인된 수치지도라는 장점이 있으나 자료구입 비용이 높고 자료의 형태에 따라 편집 및 반영에 많은 시간과 비용이 소모됨

<그림 3-18> NGIS 수치지도 자료의 반영과정

나. 자료협조 기관 유형 검토

- 교통시설물은 관리와 DB구축이라는 관점에서 자료를 분류할 수 있고 관리와 DB구축 기관이 동일하지 않을 수 있음
- 교통주제도 구축에 활용 가능한 자료를 관리기관과 DB구축기관으로 분리하여 정리하 여 참조함
- 교통시설물은 크게 다음과 같이 분류할 수 있음
 - 도로(도로중심선, 도로교차점, 회전제한)
 - 철도(철도중심선, 철도교차점)
 - 도로시설물(교량, 터널, 고가차도, 지하차도 등)

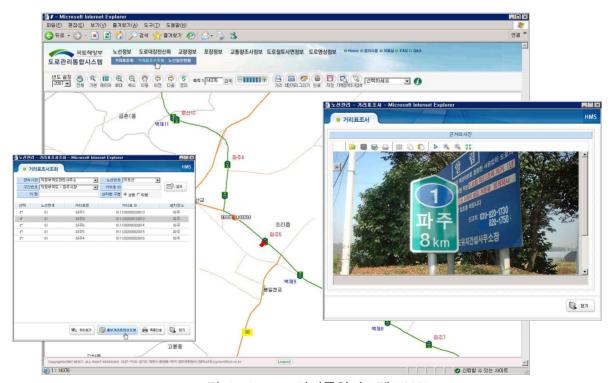
1) 도로 관련 기관

- 도로는 도로등급에 따라 관리하는 기관이 서로 다르며 관리기관, 지자체에 따라 각각 개별적인 시스템을 구축하여 도로 관련 DB(도로망, 도로대장 등)를 관리하고 있는 것으로 판단됨
- ㅇ 자료의 형태는 지리정보, 도면 및 각종 대장으로 구성됨

- 고속국도: 한국도로공사, 각 민간투자고속도로 관리업체
- 일반국도. 국가지원지방도 : 각 국토관리청 및 국도유지관리사무소
- 지방도, 특별광역시도, 시군구도 : 지방자치단체

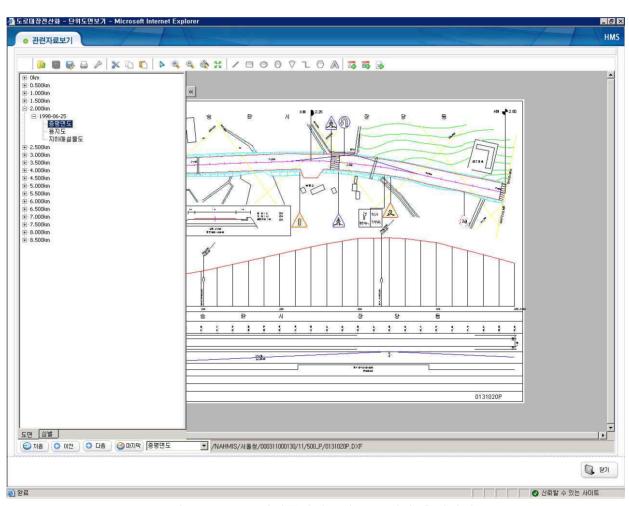
2) 철도 관련 기관

- 철도는 구간과 철도등급에 따라 한국철도공사(코레일), 철도시설관리공단, 시도별 지 하철 관리공사 등에서 관리되고 있음
- 철도 부문 기본지리정보 외 철도와 관련된 지리정보를 구축하여 제공하고 있는 관리 주체는 현재까지 없는 것으로 조사됨


3) 교통시설물 관련 기관

- 도로와 관련된 각종 시설물(교량, 터널, 지하차도, 고가차도)은 도로등급별 관리주체 가 직접 관리와 DB구축을 수행하고 있음
- 일반국도 및 국가지원지방도의 경우, 국토해양부 도로관리통합시스템 구축 사업을 통해 시설물 및 노선정보를 DB화하여 지속적인 갱신업무를 수행하고 있으며, 해당사업에 교통주제도를 적극적으로 활용하고 있음
- 일반국도는 각 지방국토관리청 산하 국도유지관리사무소에서 노선 및 시설물에 대한 관리를 총괄하고 있음
- ㅇ 한국도로공사는 노선 및 관련시설물 관리체계를 구축하여 내부적으로 활용하고 있음
- 시도별로는 기관별로 자료구축현황이 상이하고 재정현황 및 정보화시스템 구축현황에 따라 그 격차가 심함

다. 활용 가능한 유관기관 자료 조사

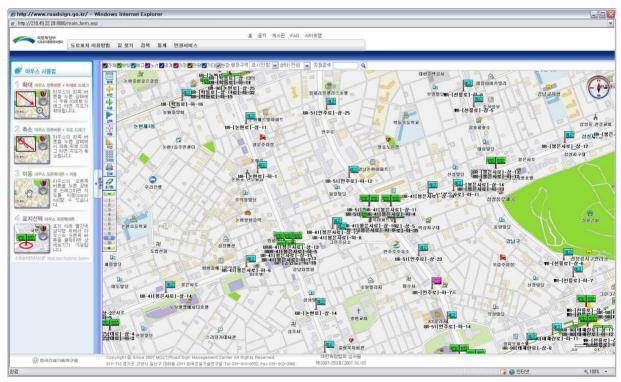

- 기존에 활용하던 협조기관별 자료 이외에 교통시설물 조사 및 교통주제도 구축에 참 조 가능한 자료 및 정보화시스템을 조사하고 검토함
- 조사의 주요 관점은 자료의 갱신주기 및 구축범위임
- 이와 함께 자료의 협조체계를 유기적으로 구성할 수 있는지 가능성에 대한 검토를 수 행함

- 1) 도로관리통합시스템(Highway Management System)
 - 일반국도의 관리 및 연계시스템을 효율적으로 활용하기 위해 구축된 도로관리통합시 스템(HMS)은 다음과 같이 각 부문별 시스템의 정보통합으로 구성됨
 - 포장관리시스템
 - 이정관리시스템
 - 교통량정보시스템
 - 절토사면관리시스템
 - 교량관리시스템
 - 도로대장관리시스템
 - 각 시스템은 일반국도의 유지보수업무에 알맞도록 구축되어 있으며 도로관리통합시스템은 이정거리표를 기반으로 위 시스템의 데이터베이스를 통합하여 관리하고 있음
 - 교통주제도와는 달리 일반국도의 신설 및 변경, 확포장 등 변경내역이 비교적 주기적 으로 입수되어 이를 기반으로 각종 조사와 DB구축 업무를 수행하고 있음

<그림 3-19> 도로관리통합시스템(HMS)

- 일반국도는 교통주제도 중 주요도로에 해당되고 매년 변경사항이 꾸준하게 발생하는 도로등급으로 도로관리통합시스템의 도로이력자료를 확보할 수 있다면 이를 효과적으 로 교통시설물 조사에 활용할 수 있을 것임
- 관련자료 중 도로대장관리시스템에서 구축하고 있는 도로대장은 수치지도 형태(DXF) 로 제작되어 DBMS에 저장되기 때문에 선형 및 속성, 그리고 교통시설물(중앙분리 대, 표지, 신호등 등)에 대한 조사 참고자료로 활용성이 높을 것임
- 도로통합관리시스템은 기본도면으로 교통주제도를 채택하고 있어 상호 자료호환 및 협력에 좋은 조건을 갖추고 있음

<그림 3-20> 도로관리통합시스템 도로대장 출력화면

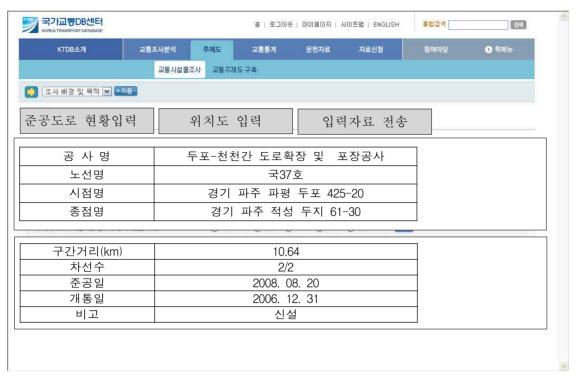

- 2) 도로표지관리시스템(Road Sign Management System)
 - 도로표지관리시스템은 전국 시군구도 이상의 모든 도로 상의 표지 설치 및 관리정보 를 운영하는 시스템임
 - 각 도로관리기관별로 담당자가 직접 도로표지 설치 및 관리정보를 시스템에 접속하여 입력하고 조회할 수 있는 시스템임
 - 도로표지는 도로가 준공되는 시점에서 필수적으로 설치되어야 하는 시설물로써 도로 준공현황과 밀접한 관련이 있는 시스템임
 - 담당자 자료입력 및 검토와 현장조사 등을 통해 즉각적인 표지정보의 갱신을 수행하고 있으며 이를 활용한다면 각 도로의 준공현황을 빠르게 직접적으로 수집할 수 있음

<그림 3-21> 도로표지안내시스템 구성

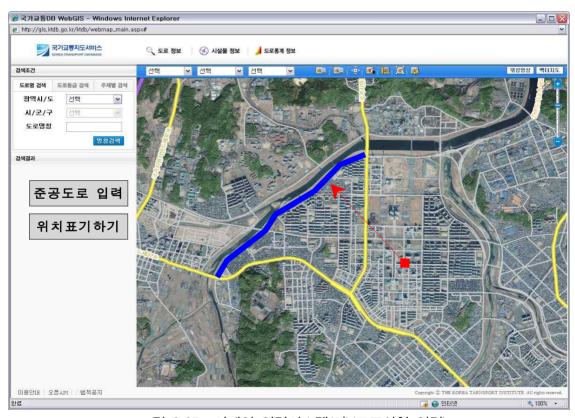
<그림 3-22> 도로표지안내시스템 업무 구성

<그림 3-23> 도로표지안내시스템 화면

3. 기관별 자료협조 방안 제시


- 각 기관별로 구축 및 관리되고 있는 자료를 더욱 효율적으로 수집하여 교통시설물 조 사에 반영하기 위해서는 자료의 협조, 협조자료 가공에 관한 방안이 필요함
- 구분되는 자료형태에 따라 자료를 수집하고 가공하는 방안을 제시하고 향후 조사지원 체계와 연계할 수 있는 방법을 모색함

가. 준공도로 협조자료 형태


- 가장 조사 대상 도로의 현황을 파악하기 용이한 형태의 자료임
- 별도의 조서 작성 공정이 각 기관별로 존재하지는 않지만 일반적인 통계자료(도로현 황조서 등)를 작성하면서 추가적으로 작성이 가능하도록 구성되어 있음
- 기존의 자료협조는 도면과 대상도로 리스트를 작성하여 협조 받고 이를 다시 자료화 하는 과정을 거침
- KTDB 홈페이지 및 이메일 응답시스템을 도입하여 신속하고 효율적으로 자료협조가 가능한 방안을 제시하고자 함

1) 협조자료 작성 및 입력

- 기존에는 오프라인 상에서 엑셀 또는 한글파일을 이용하여 리스트 작업을 수행하고 이에 추가로 위치도를 이미지파일 또는 종이도면으로 작성하여 제출하였음
- 국가교통DB 홈페이지 또는 조사지원시스템의 자원을 활용하여 각 자료협조 대상자들에게 이메일을 전송하고 링크로 열리는 입력창에 대상도로의 정보(리스트의 입력내용)를 입력하고 KTDB Web GIS 시스템에서 대상도로를 표기하고 이를 직접 입력 또는 위치를 이미지로 저장하여 입력 이메일에 첨부하도록 함
- 공문을 수령하고 자료를 작성하여 다시 발송하는 공정을 직접적으로 입력하는 방식으로 개선하여 자료협조시간을 단축할 수 있음
- 주기적으로 대상자들에게 이메일을 전송하여 상시로 준공된 도로의 현황을 입력할 수 있도록 하여 상시조사체계를 구축하여 주기적 교통주제도 갱신이 가능하도록 함
- 조사지원체계를 통한 자료수집이 가능하다면 유사한 형태로 자료 협조가 가능한 모든 기관에 위와 같은 방법을 적용할 수 있음

<그림 3-24> 준공도로 이메일 입력시스템(안)(현황자료 입력)

<그림 3-25> 이메일 입력시스템(안)(도로선형 입력)

2) 자료협조 공정 관리

- 기존에 주로 유선전화에 의존하던 자료협조 확인을 이메일 및 시스템 입력을 기반으로 한 공정관리 모듈로 전환하여 조사관리체계에 활용할 수 있음
- 협조자료 접수 후 이를 다시 자료화하는 공정을 자동화 하여 조사준비기간을 단축하고 비교적 짧은 기간을 통해 일련의 조사공정을 수행할 수 있음

나. 지리정보 및 DB구축 자료 협조 형태

- ITS 표준노드링크, 새주소 도로망, 그리고 NGIS 수치지도와 같이 일정시기를 기준으로 구축된 최종 지리정보 및 DB를 협조 받는 경우를 의미함
- 준공도로 형태와 같이 단일 조사 대상별로 공정을 수행할 수 없으며 교통주제도와 협 조자료를 비교하여 조사대상을 산출하는 방법을 활용해야 함
- 기존 교통주제도와 협조자료를 공간적으로 분석하여 대상도로를 추출하고 이를 각 객체로 구분하여 조사대상으로 리스트화 하는 별도의 공정을 시스템에서 구현하여 활용할 수 있음
- 추출한 조사대상을 지역별(시군구) 또는 도로등급별로 구분하고 연장을 산출하여 조 사대상으로 자료화하는 시스템을 검토함

다. 시스템 연계 형태

- 교통시설물 조사에서 필요한 자료는 주로 공간정보보다는 도로 및 철도 등 교통시설 물의 신설 및 갱신에 관련된 이력자료임
- 연계 가능성을 제시한 도로통합관리시스템(HMS) 및 도로표지관리시스템은 도로의 신설, 변경, 갱신 이력이 비교적 주기적으로 갱신되는 시스템임
- 각 시스템의 이력관리공정에 KTDB로 간단한 입력정보를 전달할 수 있는 공정을 추가 하면 수월하게 이력정보를 취득할 수 있음
- 주기적으로 또는 상시적으로 구축된 교통주제도를 갱신주기마다 각 시스템에 제공하여 자료의 입력 및 반영, 그리고 활용이 순환되도록 한다면 각 시스템의 효율성이 높아질 것으로 판단됨

4. 교통시설물 조사 및 교통주제도 구축 결과 제공 방안 마련

- 교통주제도는 매년 조사 및 갱신을 통해서 도로 및 철도, 교통관련시설물의 지리정보 DB를 구축한 것으로 그 활용가능성이 매우 높음
- 1년 단위 갱신이라는 주기의 장기성과 이전년도 12월을 기준으로 작성하여 배포시점 과 기준시점이 1년 이상 차이가 발생하는 한계가 있었음
- 레벨 2 수준의 도로망으로 공간적 범위가 한정되어 비교적 세밀한 도로망이 포함되지 않은 것도 활용성이 떨어지는 요인이 되었음
- 2009년도 국가교통DB구축사업을 통해 교통DB에 대한 접근성을 강화하고 일반사용자 에 대한 자료배포가 가능해짐
- 2009년도 국가교통DB구축사업에서 서울을 시작으로 추진되고 있는 레벨 1 교통주제 도 구축을 통해 전국 모든 도로망에 대한 주제도 구축이 가능해질 것으로 판단됨
- 각 기관별 상시조사를 위한 협조체계 구축이 완료된다면 주기적(1개월, 1분기 등)으로 조사를 수행하여 교통주제도를 구축, 즉각적으로 배포하는 것이 가능해짐
- 교통주제도를 주로 활용하는 기관을 선정하여 교통주제도 갱신과 함께 자동으로 자료 를 전송하고 이를 사용하도록 하면 교통주제도 사용에 대한 만족도가 높아질 것으로 파단됨
- 일반사용자들이 지리정보 툴이 없이도 교통주제도를 활용할 수 있도록 GeoPDF 파일 을 생성하여 홈페이지를 통해 배포하는 방안을 검토함
- 최근 사용자가 급격히 증가하고 있는 스마트폰 사용자를 위한 어플리케이션을 제작하여 국가교통DB에서 구축하고 있는 각종 DB와 교통주제도를 연계하여 활용할 수 있는 방안을 검토함

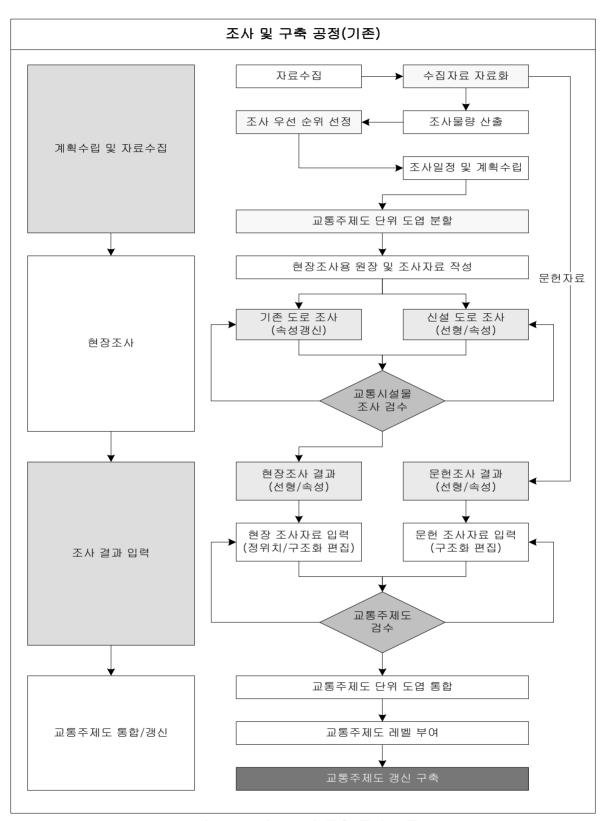
제3절 조사/구축 공정 개선 방안

1. 개요

- 교통시설물 조사 및 교통주제도 구축은 조사와 구축을 별도로 수행하는 절차로 진행되어 왔으나 시간 및 예산의 제약은 다양한 교통시설물의 DB화에 장애가 되고 있음
- 조사 및 구축에 소요되는 시간으로 인해 교통주제도는 연간 1회 갱신을 수행하고 있 으나 이는 자료의 효율적인 활용에 제약사항으로 작용하고 있음
- 기존의 도로망 이외에 신호등, 횡단보도와 같은 추가적인 세부 교통시설물에 대한 조 사를 수행하기 위해서는 개선된 조사기법이 절실한 상황임
- 이는 조사기법만을 개선하는 것이 아니라 조사와 DB의 구축/갱신이 실시간 또는 효율적으로 진행될 수 있는 방안을 마련하여 조사 및 구축공정을 효율화하고 시간 및 예산을 단축하여 지금까지 수행할 수 없었던 다양한 시설물에 대한 조사를 수행할 수 있도록 하는 것에 가장 큰 목적이 있음
- 조사시스템의 개선과 함께 조사 및 구축업무를 절차적으로 진행할 수 있는 조사/구축 지원시스템을 웹기반으로 구축하여 조사 및 구축업무를 관리하고 검증하는 수단으로 활용함과 동시에 결과물을 대외적으로 제공할 수 있는 기반을 마련하고자 함
- 개선된 공정을 반영한 조사지원시스템 설계 및 시범구축을 통해서 조사의 시작부터 DB의 최종구축까지 전체공정을 관리할 수 있는 대안을 제시하고 향후 이를 기반으로 발전된 시스템을 구축하는데 기틀을 마련하고자 함
- 조사업무별로 적용 가능한 다양한 조사시스템에 대한 연구를 수행하여 기존 노트북PC 이외에 UMPC, PDA, PMP, 스마트폰을 활용한 조사시스템을 구상하고, 단말기와 조 사업무별 특성을 고려하여 조사시스템을 개선하고 확장할 수 있는 방안을 마련함
- 향후 교통주제도 구축 부문에 적용하여 검증된 조사/구축 지원시스템은 교통조사 및 관련업무 전반에 효율적으로 사용할 수 있도록 적용하고, 이를 통해 국가교통DB구축 사업 전체 업무공정 및 관련성과물을 통합하여 관리할 수 있도록 하는 체계를 구축하 는 것을 최종목표로 함

2. 기존 조사/구축 공정 분석 및 문제점 도출

- 2008년 사업까지 교통주제도 중 도로망은 2차선 이상 포장도로에 대해서만 조사를 수 행하였으며 이는 교통주제도 도로망 레벨 2에 해당되는 도로임
- 최근 복잡한 도심 및 다양한 교통수단의 표현 및 분석을 위해 복합교통망을 구현하고 도로망의 세밀도로 인해 활용성이 떨어지는 교통주제도를 보완하기 위해 레벨 1 도로 망 조사사업을 2009년부터 단계적으로 시행할 계획임
- 교통주제도 레벨 1 도로망에 해당하는 도로는 주로 기존의 도로망에서 제외되었던 도 심의 이면도로, 사유지 도로 등 실제로 통행에 많은 영향을 주는 도로가 포함되어 있 으며 교통분야 이외에도 다양한 정보화 사업에서 그 사용요구가 증가하고 있음
- 복잡한 도심의 도로현황을 GIS DB화 하기 위해서는 다양한 참고자료 및 조사시스템 의 개선이 절실한 상황임. 기존 차량을 이용하는 도로망 조사는 교통혼잡 및 이동에 제약이 발생하여 이를 개선할 방안을 마련해야 함
- 기존의 조사 및 구축의 업무범위는 도로망의 갱신에 한정되어 왔으며 이로 인해 도로 망에 편향된 조사 및 구축절차만 고려되었음
- 교통시설물 중 교통망(도로, 철도)을 제외한 주요 시설물을 조사하기 위해서는 조사 에 투입되는 시간 및 예산, 인력을 효율적으로 활용할 수 있는 기법이 필요함


가. 조사 이동수단 및 인력 운영

- 지금까지 교통시설물 조사는 주로 차량을 이용한 도로에 대한 조사였으며 전국지역간
 의 고속국도 및 간선도로 등 통행속도가 높고 연장이 긴 도로를 조사하는데 효율적으로 활용됨
- 조사항목이 단순하고 조사를 위해 통행해야 하는 구간의 연장이 길수록 차량을 이용 한 조사는 효율적임
- 이동속도가 빠를 경우, 많은 대상물을 신속하게 조사할 수 있다는 장점이 있다는 반면에 조사항목이 세분화되고 다양해지면 항목누락 및 조사원의 조사오류가 발생할 기회가 많아짐
- 기존 차량을 이용하는 조사팀 운영은 실제로 조사는 1인이 수행하나 반드시 2인이 필요한 체계였음

- 차량을 활용한 조사는 계절 및 기상상태에 의한 영향을 최소화할 수 있다는 장점이 있음
- 차량에 의존하는 조사는 조사를 위해 부대비용(유류비, 주차비, 차량유지보수비)을 발생시키는데 이는 매우 높은 비용임
- 녹색교통을 지향하는 최근의 교통 패러다임을 고려한다면 친환경적이고 비용이 최소 화되는 수단이 필요함

<표 3-6> 차량 조사의 장단점

 항목	장/단점	내용		
	장점	- 통행속도가 빠름 - 기존 도로망 조사에 효율적임 - 계절 및 기상상태에 의한 영향이 적음		
차량 조사	단점	 조사항목이 세분화 되면 조사누락 및 오류발생 확률이 높음 차량운용에 의한 부대비용이 많이 발생함 도로망의 세밀도 및 교통상황에 조사효율이 의존적임 조사자 이외에 운전자가 반드시 필요함 		

<그림 **3-26**> 기존 조사 구축 공정 흐름도

나. 현장조사시스템

- 기존 조사시스템은 다음과 같이 구성됨
 - 조사S/W 운용을 위한 노트북 장비(차량전원 사용)
 - GPS 수신기(1주파/NMEA), 조사장비 거치대
 - 조사원장(출력원장)
- 기존 조사시스템은 조사원장 및 조사시스템을 활용하여 조사 후 이를 기반으로 교통 주제도를 구축하는 방식임
- 기존 조사시스템은 노트북을 기반으로 개발되어 부피가 크고 전원 공급시간의 한계로 인하여 차량과 같은 상시전원이 필요함
- 조사원장에 조사자가 별도로 속성정보를 기록하고 이를 조사 후 DB구축시 사용하여 조사자료를 관리 및 저장에 많은 시간이 소요됨
- 기존 조사시스템은 사용자의 입력 및 활용에 제약이 많은 시스템 구성으로 사용에 불 편하고 활용에 한계가 있음

다. 조사결과의 취합 및 자료화

- 기존 조사시스템에서 산출되는 조사결과물은 다음과 같음
 - 조사워장(출력도면)
 - 조사결과 파일(GPS 포인트)
 - 조사결과 파일(GPS 트랙로그)
- 기존 조사시스템은 독립된 S/W로 제작되어 조사를 수행하고 결과물을 저장한 후 조 사지역별, 시기별로 취합하여 별도의 과정을 거쳐 조사결과로 생성됨
- 조사원장은 조사 후 스캔을 통해 이미지로 저장되며, 실제로 조사결과의 입력시에는 조사원장을 입력자가 직접 눈으로 확인하여 속성을 입력하는 방식을 사용함
- 이는 조사자의 수작업으로 입력하는 방식으로 조사자의 업무수행능력에 따라 그 결과 가 달라지며, 조사결과를 입력하는 과정에서 다시 작업자의 직관적인 판단이 포함되 어 실제 대상물에 대한 조사결과가 그대로 반영되지 않는 문제점이 발생할 수 있음
- 조사기간 및 조사대상의 범위를 고려할 때 조사결과를 취합하고 자료화하는 과정에 많은 시간 및 인력이 소요됨

라. 조사결과의 검증

- 조사대상의 산출, 조사자료 작성, 현장조사, 조사산출물 자료화 등 각 공정별 결과물을 검수하는데 많은 시간과 비용이 소요됨
- 검수 자체에 많은 시간이 소요될 뿐만 아니라 검수를 위한 자료화(스캔, 좌표변환, 문서산출)에도 시간 및 인력이 높은 비율로 투입되어야 함
- 또한 현장을 기록한 사진, 또는 영상이 조사결과로 생성되지 않기 때문에 원장에 기 입된 조사결과를 검증하기 위해서는 반드시 현장을 방문해야 하는 번거로움이 있음
- 조사와 검수는 시차가 많아질수록 비교/검토에 애로사항이 많아지는 특성이 있어 조 사와 함께 즉각적으로 검수를 진행할 수 있어야 효율적임

마. 도엽분할 및 병합 공정

- 교통시설물 조사 및 교통주제도 구축시 단위작업의 기준은 1:25,000 NGIS 도엽(도 곽)경계로 구분된 단위도엽임
- 제공하고 있는 교통주제도는 전국 통합 자료를 기본으로 하고 있으나 작업의 관리 및 동시작업을 위해 단위도엽으로 작업을 수행하고 이를 통합하는 과정으로 진행되어 왔음
- 다수의 작업자가 동시에 작업을 진행하고 이를 전국 통합 자료로 구성할 수 있다는
 장점이 있으나 각 단위도엽별로 인접하는 노드, 링크에 대한 별도의 검토작업이 필요
 하고 도엽 단위로 분할 및 전국 통합 자료 작성에 많은 시간이 소요됨
- 최초 교통주제도를 구축할 때 1:5,000 축척의 NGIS 수치지도를 활용하였고 이때 관리기준으로 1:25,000 도엽을 사용하였음. 이후 NGIS 수치지도가 무상으로 제공되던 시점까지는 수치지도를 반영하는 작업으로 인해 효과적인 공정이었으나 현재는 교통주제도 구축에 NGIS 수치지도가 차지하는 비중이 매우 적음
- 전국 단위 교통시설물 조사 및 교통주제도 구축을 수행할 경우를 제외하고 교통주제 도 전체 단위도엽을 분할하고 병합하는 과정을 반복하는 것은 매울 불필요하고 소모 적인 공정으로 판단됨

바. 입력 자료 형식(CAD)과 최종 자료 형식(SHP)

- 통상적으로 교통시설물 조사 후 교통주제도를 구축하는데 사용되는 S/W는 오토캐드 (AutoCAD) 및 ArcGIS 제품군임
- 기존 NGIS 수치지도는 CAD 형식인 DXF 파일로 작성되어 있고 일반적으로 공간정보 입력 및 수정작업에 CAD 형식의 자료를 사용하고 있음
- 현장조사시스템 및 최종산출물로 생성되는 파일은 ESRI Shape Files 형식이므로 조사 자료를 입력하고 교통주제도를 정위치, 구조화 편집할 때 CAD 파일로 변환/반영 후 SHP 파일로 재변환하는 방법을 사용함
- 위의 두 가지 자료형식은 완벽한 호환을 보장하는 파일형태가 아니며 실제로 자료변 환 간에 손실 및 오류가 발생하기도 함
- 최종산출물인 교통주제도 전국 통합 자료를 기준으로 고려할 때, 자료의 입력 및 활용 형식을 동일하게 운영하는 것이 매우 안정적이라는 결론을 얻음
- 또한 전체 공정을 유기적으로 운영하고 각 공정 간의 원활한 데이터 연계를 위해서는 형식 통일이 반드시 필요하다고 판단됨

사. 조사결과의 DB입력

- 국가교통DB구축사업을 수행하기 위해서 조사자와 DB입력자는 각 분야별 지침에 준 하여 교육을 받아야 함
- 현장조사의 경우, 예비조사를 통해 조사원의 조사결과를 미리 검토하고 보완하는 절 차를 포함하고 있음
- DB구축의 경우, 각 조사결과의 반영(입력, 편집, 수정)작업에 대한 이력을 별도로 관리하고 있으며 이를 통해 매년 변경된 내역을 검토함
- 위와 같은 과정을 거치지만 현장조사자와 DB입력자는 서로 다른 인력이며 두 사람의 사고가 명확히 일치하지 않는 한은 조사결과의 DB화에 한계가 있음
- 이런 문제점은 현장에서 조사를 수행하는 조사자가 현장상황을 그대로 반영하여 DB 입력을 수행하지 않는 한 지속적으로 발생할 수 있음

아. 교통주제도 검수

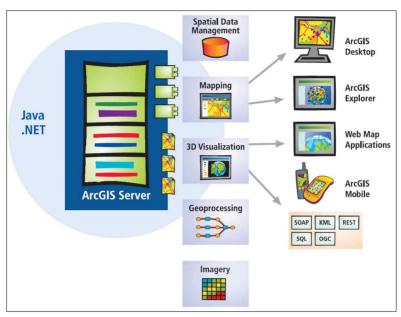
- 기존의 공정에서 교통주제도 검수는 논리오류검수 및 육안검수로 진행됨
- 논리오류검수는 교통주제도 각 테이블 간의 논리적 무결성을 검토하는 S/W적인 검수 임
- 이를 통해 교통주제도의 입력값 오류, 주요 Key값 및 ID에 대한 무결성을 검증할 수 있음
- 교통주제도 육안검수는 논리적인 오류검수로는 판단이 불가능한 노선정보, 속성정보 의 유효성을 개별적으로 검증하는 과정임
- 논리오류검수의 경우, 각 단위도엽 공정이 완료되면 매번 수행하기 때문에 연계된 각 테이블 및 필드 간에 참조로 인해 하나의 오류로 여러 개의 오류가 발생할 수 있으며 이런 경우 각 오류에 대해 모두 검토를 수행해야 하는 단점을 가짐

<표 3-7> 조사 및 구축 공정별 현황 정리

항목		개선 필요 사항			
	장점	- 통행속도가 빠름 - 기존 도로망 조사에 효율적임 - 계절 및 기상상태에 의한 영향이 적음			
차량조사	단점	- 조사항목이 세분화 되면 조사누락 및 오류발생 확률이 높음 - 차량운용에 의한 부대비용이 많이 발생함 - 도로망의 세밀도 및 교통상황에 조사효율이 의존적임 - 조사자 이외에 운전자가 반드시 필요함			
조사 검수		- 공정별 결과물 검수에 시간 및 비용 소요 - 검수를 위한 자료화에 시간 및 비용 소요 - 조사 및 검수시기의 격차로 인해 효율적인 조사 및 검수 불가능			
조사 결과 자료화		- 조사결과의 활용을 위해 별도의 작업이 필요함 - 조사 및 DB구축시 인력의 능력차가 결과에 영향을 미침 - 조사결과 취합 및 자료화에 많은 시간이 소요됨			
조사 시스템	조사 S/W	- 부피가 크고 상시전원이 필요함 - 조사자료의 관리 및 저장에 시간비용이 많이 소요됨 - 세밀한 도로속성조사에 한계가 있음 - 도로망 조사에 특화되어 기타 시설물 조사에 활용도 떨어짐			
	조사원장	- 종이도면으로 보관에 어려움 - 도면의 분실 등에 취약함 - 조사 전/후 자료화에 시간이 많이 소요됨			
	조사공정	- 조사/구축공정이 순차적으로 진행되어 DB구축 및 갱신 기간이 길어짐			
교통주제도 구축	단위도엽 분할 및 병합	- NGIS 수치지도 반영에 효과적인 방법임 - 도엽분할 및 병합에 많은 시간과 노력이 소요됨 - 인접도엽간 노드, 링크를 연계 편집이 필요하며 오류발생 확률이 높음			
	입력 및 최종 자료형식 변환	- 입력과 변환에서 완벽한 호환이 보장되지 않음 - 형식변환으로 자료손실 및 오류가 발생함 - 형식변환에 많은 시간이 소요됨 - 각 공정 간의 원활한 데이터 연계를 위해 형식 통일이 필요함			
	DB입력 작업	- 조사자와 DB입력자가 동일하지 않음 - 동일한 지점의 동일한 이슈에 대해 서로 다른 의견을 가짐 - 조사자가 현장상황을 기억하지 못할 경우, 입력 불가함 - 조사자/입력자에 대한 교육을 수행해도 작업평준화가 힘듬			
	교통주제도 검수	- 단위도엽/공정 단위 논리오류검수로 많은 시간이 소요됨 - 연계/참조하는 테이블 및 필드가 존재하기 때문에 하나의 입력오류가 실제로는 다수의 오류로 표출됨			

3. 조사/구축 공정 재설계를 위한 기술자료 수집 및 검토

가. 개요

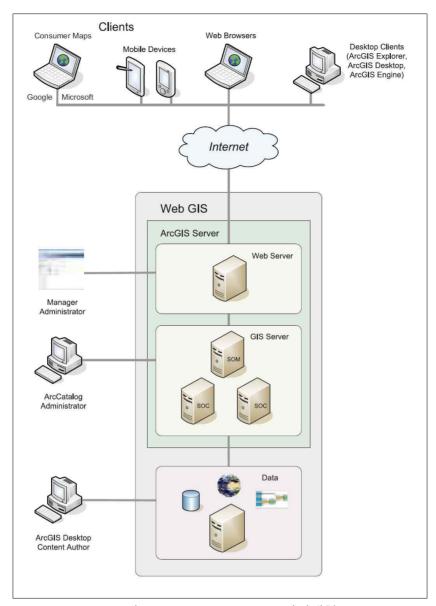

- 기존의 조사/구축 공정을 개선하려면 재설계된 공정에 적합한 지리정보 솔루션을 적 용해야 함
- 상용화된 제품을 구매하여 사용하더라도 교통시설물 조사 및 교통주제도 구축에 적합 한 형태로 사용자 정의가 반드시 필요하며 이를 위해 기존 사용시스템과의 연계성을 고려해야 함
- 기존에 활용되던 지리정보 솔루션은 ESRI 사의 ArcGIS 제품군으로 지리정보 구축 및 저장, 관리 그리고 웹 서비스 등 업무 전체에 대한 통합된 기능을 제공하고 있음
- 전체적인 기능을 제공하고는 있지만 각 단위업무별로 활용되고 있어 그 효율성이 떨어지는 문제점이 있음
- 이런 문제점을 공정개선을 통해 개선하고 사용자의 작업환경에 적합하도록 재구성하 는 과정이 필요함
- 이를 위해 최근에 출시된 ArcGIS Server와 ArcPad 제품에 대한 검토를 수행하고 이를 공정개선에 반영할 수 있는 방안을 모색함
- 최근 다양한 형태로 출시되고 있는 휴대형 단말기들의 특성 및 성능을 검토하여 현장 조사시스템을 다양화하고 개선하는데 활용하고자 함

나. 엔터프라이즈 GIS 솔루션(ArcGIS Server)

- ArcGIS 솔루션은 지리정보의 가공, 저장, 게시를 수행하는 각각의 응용프로그램으로 구성되어 있음
 - ArcGIS 데스크탑 제품군 : 지리정보의 생산, 편집, 가공
 - ArcSDE 제품군 : 관계형 데이터베이스와 연계한 공간정보 데이터베이스 구축
 - ArcIMS 제품군 : 생산, 저장된 지리정보의 웹서비스
- 최근에 발표된 ArcGIS Server 9.3 제품은 위와 같이 분산되어 관리되고 운영되던 제품군의 기능을 하나로 통합하여 상호연계성을 높이고 각 공정 간의 효율성을 극대화한 것임

1) ArcGIS 개요

○ ArcGIS Server는 지리 데이터의 관리, 매핑, 지오프로세싱, 공간 분석, 편집작업, 그리고 다양한 규모의 기관과 웹을 통해서 배포되는 다른 GIS 기능을 지원하는 종합적인 웹 기반의 GIS 서버를 제공함


<그림 3-27> ArcGIS 서버의 구성

- ArcGIS Server는 중앙 관리, 다수의 사용자 지원, 다양한 GIS 기능 접근 제공, 산업표준 사용 을 위해 구축된 Web GIS뿐만 아니라, 작업그룹, 부서별, 엔터프라이즈GIS 애플리케이션을 각각의 목적에 맞게 구축하기 위한 플랫폼임
- ArcGIS Server는 다음을 포함함
 - 지리정보의 서비스와 작업의 표출도구
 - 웹 애플리케이션 생성을 위한 강력하고, 사용하기 쉬운 프레임워크 포함
 - GIS 서비스 이용을 위한 제품화 된 애플리케이션 포함
 - 애플리케이션에서 사용하기 위한 온라인 기본도와 지리공간 서비스 포함
 - 엔터프라이즈 지오데이터베이스 지원, 트랜잭션 관리, 지오데이터 서비스 제공
- ArcGIS Server는 발행하기 쉬운 제품화된 웹 매핑 애플리케이션이 따르며, 웹 매핑 애플리케이션을 커스터마이징하고 확장하는데 사용되는 .NET 과 Java의 애플리케이션 개발 프레임워크를 포함함

- 모바일 클라이언트 발행을 위한 ArcGIS Mobile Application과 SDK를 포함함
- ArcGIS Server는 모든 지오데이터베이스 관리를 지원하는데, DBMS기반 지오데이터 베이스의 엔터프라이즈 ArcSDE 기술과 지원은 ArcGIS Server의 하나의 구성요소임
- ArcGIS Server는 구성, 발행, 웹 서비스와 애플리케이션을 조율하는데 사용되는 서버 관리 웹 애플리케이션을 포함함

2) ArcGIS Server의 아키텍쳐

- ArcGIS Server 시스템은 다음의 컴포넌트를 통합하고 있음
- GIS 서버는 맵, 글로브, 지오프로세싱 도구, 어드레스 로케이터와 같은 GIS 리소스를 호스트하고 그것을 클라이언트 애플리케이션에 서비스의 형태로 노출시킴. 클라이언 트 애플리케이션이 특정 서비스의 사용을 요청하면 GIS 서버는 이에 대한 요청을 처리하여 이것을 클라이언트 애플리케이션으로 응답함
- 웹 서버는 GIS 서버에서 실행되는 리소스를 활용하는 웹 애플리케이션과 서비스를 호 스트함
- 클라이언트 애플리케이션이란 인터넷 서비스를 위해 HTTP로 접속하거나 LAN이나 WAN과 같은 로컬 서비스에 접속하는 웹, 모바일, 데스크탑 애플리케이션을 의미함
 - 웹 매핑 애플리케이션
 - 브라우저 기반의 애플리케이션과 웹 매쉬업 구축을 위한 JavaScript API
 - 무료 ArcGIS Explorer 애플리케이션
 - ArcGIS Mobile

<그림 3-28> ArcGIS Server 아키텍쳐

- 테이터 서버는 GIS 서버에서 서비스로서 발행되는 GIS 리소스를 포함하고 있으며, 그 러한 리소스에는 맵 문서, 어드레스 로케이터, 글로브 문서, 지오데이터베이스, 지오 프로세싱 도구박스가 있음
- ArcGIS Server 운영관리자는 GIS 리소스와 서비스를 발행하고 운영관리하기 위해 Manager나 ArcCatalog를 모두 사용할 수 있음. Manager는 GIS 서비스와 운영관리, 웹 애플리케이션 생성과 관리, 서버 맵과 ArcGIS Explorer 맵의 발행을 지원하는 웹 애플리케이션임

- 서버로 발행될 맵, 지오프로세싱 작업, 이미지, 글로브와 같은 GIS 리소스를 작성하기 위해 사용자는 ArcMap, ArcCatalog, ArcGlobe와 같은 ArcGIS Desktop 애플리케이션의 사용이 필요함
- 3) ArcGIS Server 활용가능성 제고
 - ArcGIS Server에서 주목할 만한 기술적 요인은 다음과 같음
 - 조사 및 구축 공정별로 생성되는 데이터의 일원화
 - 데이터 일원화를 통해, 조사 및 최종산출물, 웹서비스까지 동일하고 관리가 용이한 공간 데이터베이스 활용
 - 휴대용 단말기 플랫폼, 웹서비스 등 다양한 형태의 개발환경 지원
 - 조사 및 구축공정에 관련된 모든 관계형 DB, 공간정보, 기타(엑셀, 텍스트 파일)자료를 동시에 관리하고 이를 기반으로 새로운 조사/구축결과를 갱신할 수 있다는 점에서 매우 유용할 것으로 판단됨

다. 모바일 GIS 솔루션(ArcPad)

- 통상적으로 공간정보 데이터베이스는 자료양이 방대하고 용량이 크기 때문에 고성능 의 서버시스템 또는 워크스테이션 이상의 컴퓨터에서 작업을 수행하는 것이 효과적이 였음
- 이러한 자료의 특성으로 인해 휴대용 단말기에서는 아주 협소한 범위의 자료, 또는 경량화되어 전체가 아닌 일부의 정보만을 포함하는 자료이외에는 활용이 불가능하였음
- 최근 자료 압축기술 및 휴대용 단말기들의 성능이 급속도로 향상되면서 일반적인 PC 수준의 성능으로 휴대용 단말기에서 공간정보를 확인하고, 수정하는 작업이 가능해졌음
- 그러나 여전히 휴대용 단말기는 성능에 한계가 있고 저장장치, 메모리 등이 PC 및 서 버에 미치치 못하기 때문에 해당 업무 및 단말기 특성에 최적화된 응용프로그램이 반 드시 필요한 실정임
- ArcGIS는 단순하고 복합적인 모바일 요구사항에 모두 알맞은 모바일 애플리케이션에 대한 3가지 제품 솔루션을 제공하고 있음

1) ArcPad

- 현장에서 GIS를 다루기 위한 모바일 GIS 애플리케이션임
- ArcPad는 GIS 중심적이고 상대적으로 단순한 지리적 도구가 필요한 현장 작업에 적합하며 보통 이 작업은 휴대용 컴퓨터(Microsoft의 Windows CE 또는 Pocket PC 실행)에서 수행됨

2) ArcGIS Desktop과 ArcGIS Engine

- 복합적인 매핑, 디스플레이, 편집 도구와 함께 고성능의 모바일 GIS를 위한 도구를 제공함
- 이 솔루션은 좀 더 복합적인 지리적 도구가 필요한 현장 작업에 적합하며, 보통 고성 능의 Tablet PC에서 수행됨
- 대개, Tablet PC를 사용한 맵 디스플레이는 ArcMap을 이용하여 생성할 수 있는 고해 상도의 상세한 정보를 포함해야 함

3) ArcGIS Mobile

- ArcGIS Mobile은 현장에서 데이터 수집, 조사, 매핑을 위한 제품화된 모바일 GIS 애 플리케이션을 포함함
- 또한, Microsoft Visual Studio .NET을 이용하여 사용자 정의 모바일 애플리케이션을 구축하기 위한 개발자 라이브러리를 포함하고 있음
- ArcGIS Mobile SDK는 다양한 종류의 장비(Windows Mobile Smartphone, Windows Mobile Pocket PC, Windows CE .NET, Windows XP, Vista)에서 애플리케이션을 구현할 수 있는 개발자 컴포넌트를 포함함

4) ArcPad 활용가능성 제고

○ 기존 현장조사시스템에 활용하던 ArcPad를 이용하여 조사시스템을 개발할 경우, 재사용성이 높아지고 기존의 기능을 그대로 구현하면서 추가적으로 공정 설계에 알맞은 기능을 구현할 수 있음

라. 휴대용 조사 단말기(Mobile GIS Device)

- 최근 휴대용 단말기(MD : Mobile Device) 시장이 급속도로 성장하면서 고성능, 경량 의 장비들이 많이 출시되고 있음
- 기존 PDA 와 같은 단말기와는 차별화되는 기기들로 다음과 같은 장점을 가짐
 - 비교적 고성능의 CPU와 메모리 탑재
 - 와이드형(5인치 이상) 터치스크린 액정 탑재
 - 메모리카드 이외에 HDD 타입의 저장장치 탑재
 - DMB, WI-FI, 3G 무선인터넷 등 무선통신장비를 기본적으로 장착
- 종류별 단말기의 특징을 검토하고 현장조사 및 내업 등 개선공정에 활용할 수 있는 가능성을 검토함

1) 스마트폰

- 휴대전화에 윈도우 등 모바일 운영체제를 탑재하고 기존 PC에서 가능한 다양한 기능을 탑재한 것을 통칭하여 스마트폰이라고 함
- 세계적으로 무선이동통신 및 인터넷을 기반으로 하여 무선통화 뿐만 아니라 다양한 기능을 수행 가능한 스마트폰이 급속도로 보급되고 있음
- 윈도우 운영체제인 윈도우 모바일과 애플사의 모바일 OS를 탑재한 기기들이 대표적 인 스마트폰으로 보급되고 있으며 일반 PC의 운영체제와 같이 사용자가 직접 응용프 로그램을 개발하고 이를 구동시켜 특정 목적의 업무를 수행할 수 있도록 하는 각종 API(Application Programming Interface)를 제공하고 있음
- 단점으로는 비교적 크기가 작은 디스플래이 창으로 인해 공간정보를 활용하는데 한계 가 있다는 점임
- 또한 저장장치의 용량이 한계가 있으며 플레쉬 메모리를 기반으로 하기 때문에 불안 정함

<그림 3-29> 스마트폰(애플 아이폰, 삼성전자 T-옴니아)

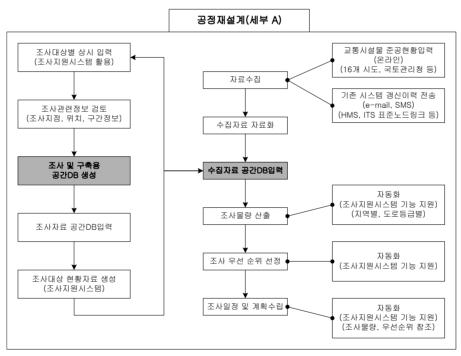
2) PMP

- PMP는 Portable Media player의 약자로써 음악, 동영상 등 미디어에 특화된 휴대기기 를 통칭함
- 기존에는 음악, 동영상 등을 주로 활용하는 기기가 대부분이였으나 사용자들의 요구 가 다양화해지면서 윈도우즈 운영체제를 탑재하고 기본적으로 PC와 동일한 인터페이 스를 가진 PMP들이 다수 출시되고 있음
- 이와 함께 PMP와 기존 노트북의 중간적인 성능을 가진 넷북 컴퓨터가 널리 보급되면 서 그 성능이 점차 고사양으로 발전되고 있는 실정임
- 기본적으로 동영상 등 미디어 실행을 목적으로 만들어진 기기이기 때문에 디스플레이 액정의 크기가 크고 지리정보 등을 화면출력하고 실행하는데 유리한 하드웨어를 기본 으로 탑재하고 있음
- HDD를 장착하고 있어 대용량의 데이터를 안정적으로 운영하는데 유리함

<그림 3-30> PMP(빌립 S5)

3) UMPC

- UMPC는 울트라 모바일 PC(Ultra Mobile PC)의 약자로써(또는 오리가미 프로젝트를 지칭) 타블렛 PC를 위한 규격을 의미함
- PC의 기본적인 성능을 그대로 구현할 수 있으면서 터치스크린 기반의 입력이 가능하고 휴대성이 뛰어난 기기를 통칭함
- 최근 넷북 등 다양한 형태의 파생적인 디지털 기기들이 계속해서 출시되고 있으며 일 반적인 기능은 PC와 유사한 수준이나 휴대형 기기이기 때문에 전력사용의 문제점이 있음


<그림 3-31> UMPC(Xplore)

4. 조사/구축 공정 재설계

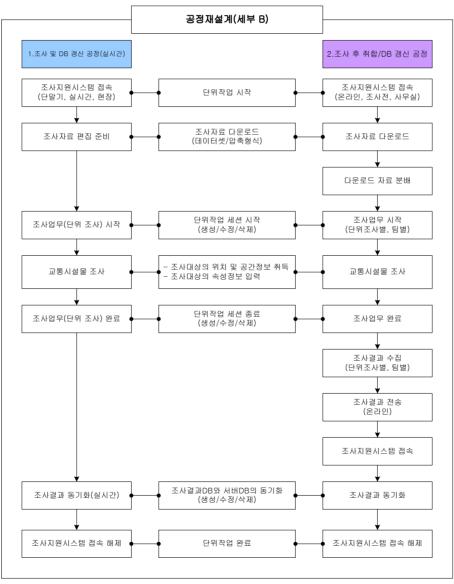
가. 전체 공정 재설계(안)

- 조사/구축 공정 재설계의 주요한 고려요소는 크게 두가지로 구분됨
 - 조사수단 및 S/W의 문제점 개선
 - 조사 및 구축 공정의 개선
- 이중 조사수단 및 S/W의 문제점은 조사 및 구축 공정의 개선내용에 알맞도록 각 조 사이동수단 및 조사S/W를 적용하여 최적의 방안을 찾는 것이 필요함
- 조사 및 구축 공정의 문제점은 단위업무별 공정의 재설계를 통해 효율적인 방안을 도 출할 수 있음
- 재설계된 조사 및 구축 공정은 2개의 세부 공정으로 분리하여 설계되었음

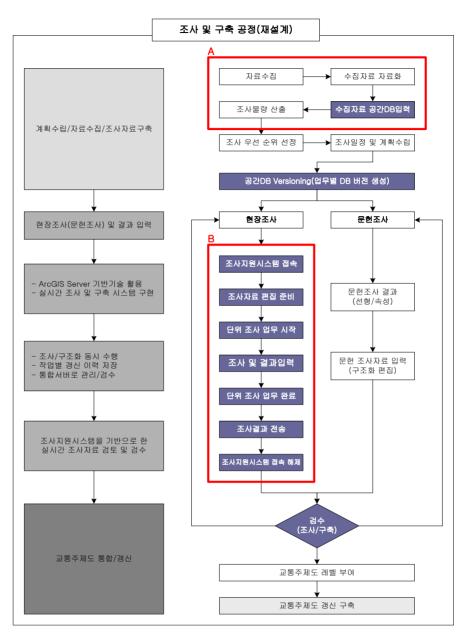
나. 세부 공정 재설계(A)

<그림 3-32> 공정재설계(세부 A)

- 세부 공정 재설계(A)에서 개선된 부분은 조사자료 생성 및 입력 부분임
- 문서자료 및 파일자료를 취합하여 전체 조사대상에 대해 리스트를 구축하고 이를 참고로 하여 조사대상 공간정보를 구축하는 방법은 상시조사 및 지속적인 조사 및 구축을 통한 주기적인 갱신이 불가능한 요소임


- 개별적인 파일형태로 조사대상 공간정보부터 최종산출물인 교통주제도까지를 구축하는 공정으로 중간산출물이 많아지고 업무의 중복을 초래하였음
- 이에 조사대상 공간정보를 구축하는 시점부터 전체 대상 자료를 공간정보DB에 입력 하고 DB를 바탕으로 전체 공정을 설계하여 업무의 효율성을 도모함
- 기존에 수작업으로 산출하던 지역별, 도로등급별 조사물량을 입력과 동시에 통계자료 로 표출할 수 있도록 자동화하여 조사우선순위 고려와 함께 조사일정까지 자동으로 산정할 수 있도록 개선함

다. 세부 공정 재설계(B)


- 세부 공정 재설계(B)에서는 현장조사 및 조사결과의 취합에 대하여 공정을 효율화 할 수 있는 방안을 제시하였음
- 기존 조사방식에서는 대상권역의 조사가 완료되고 조사결과(GPS 포인트, 트랙로그) 와 조사원장이 취합되어야 조사결과 입력(교통주제도)이 가능한 공정이었음
- 조사지원시스템 및 현장조사시스템이 전체공정을 그대로 반영할 수 있도록 구현되었 다고 가정하였음
- 조사를 수행하는 공간적 범위와 조사단말기의 특성을 고려하여 두 가지 공정으로 기 존 업무를 재설계 함
 - 실시간 조사 및 DB 갱신 공정
 - 조사 후 취합/DB 갱신 공정
- 1) 실시간 조사 및 DB 갱신 공정
 - 실시간 조사 및 DB 갱신 공정은 조사대상 공간자료의 입수부터 조사결과의 입력(조 사지원시스템)까지를 현장에서 실시간으로 수행하는 것임
 - ArcGIS Server는 각 단위작업에 대한 공간정보 Versioning을 지원하기 때문에 각 트랜 젝션별로 조사대상 공간DB는 갱신되며 이력을 생성함
 - 조사원장을 사용하지 않는 전자야장 방식의 현장조사시스템까지 고려한다면 현장에서 조사가 완료되는 시점부터 교통주제도 갱신이 가능함

2) 조사 후 취합/DB 갱신 공정

- 실시간 조사 및 DB 갱신 공정은 현장조사시스템이 무선인터넷 환경에 자유롭게 접속 할 수 있는 환경을 전제로 하였음
- 실제로 조사당시 무선인터넷 환경이 구현 불가능 할 경우, 일정범위의 조사대상에 대한 자료를 우선적으로 다운로드 받아 조사하고 이를 한번에 DB 갱신하는 방법으로 조사를 수행해야 함
- 대상권역을 전체 다운로드하고 팀별로 자료를 분배 후 조사하여 이를 취합, DB에 업 로드하는 방법으로 조사를 수행할 수 있도록 함

<그림 3-33> 재설계된 조사 구축 공정 흐름도(세부 B)

<그림 3-34> 재설계된 전체 공정 업무흐름도

- 부분별 공정을 세분화하여 재설하고 이를 전체공정에 반영하여 재구성함
- 전체적으로 업무공정이 크게 변경되지는 않았지만 부분적으로 각 단계별 수행방법 및 진행방법을 수정하여 효율적인 조사/구축 체계를 설계하였음
- 추후 상시조사체계와 연계하여 지속적인 현장조사 및 DB구축을 통해 문제점이나 추 가적인 공정의 수정을 수행하여 최적화 해야 함

5. 조사지원시스템 설계 및 시범구축

- 가. 웹기반 조사지원시스템 설계
 - 1) 조사지원시스템의 정의
 - 조사지원시스템이란 조사 및 공간DB 구축을 위한 일련의 업무를 처리할 수 있는 기 능을 포함하는 관리시스템으로 정의함
 - 조사지원시스템의 기능은 크게 다음과 같이 분류함
 - 조사자료 및 업무 관리시스템
 - 조사업무 지원시스템
 - 조사결과의 저장, 표출(리포트), 통계출력 시스템
 - 이와 함께 조사지원시스템은 조사업무의 기본활용시스템으로 현장조사시스템과 조사 결과 구축된 교통주제도를 활용하는 Web GIS 시스템과 연계되어야 함
 - 2) 조사지원시스템의 기능 정의
 - ① 조사 자료 관리
 - ㅇ 조사대상 수집자료 관리
 - 수집자료 자료화(GIS DB) 및 표출
 - 수집자료 이력관리 및 통계
 - ② 조사 업무 관리
 - ㅇ 조사계획 및 공정 수립
 - 조사업무 추진현황 표출(공정률 포함)
 - 조사업무 관련 이력관리 및 통계

- ③ 조사 결과 관리
- 조사업무 산출물 관리(입력, 저장)
- ㅇ 조사업무 산출물 표출
- 조사업무 산출물 통계
- 3) 조사지원시스템의 세부 기능 정의(조사 자료 관리)
- ① 조사대상 수집자료 관리
- 각 기관별, 정보시스템별로 수집되는 조사대상에 대한 원시자료를 정리하여 단계별로 저장하고 관리할 수 있는 기능
- 조사 단위 업무의 기준이 되는 조사대상 생성 및 편집, 수정 기능
 - 예) 준공도로 리스트 입력
- 입력방식은 단일입력/다중입력 방식으로 구분
 - 단일 입력: 단일 객체의 조사 위치 및 속성 입력
 - 다중 입력: 단일 객체 집합(양식)을 일괄로 입력
- ㅇ 수집된 원시자료의 저장 및 관리기능
 - 협조자료 원본, 종이지도(준공도면 등), 이미지파일, 대상도로 리스트 등
- ② 수집자료 자료화(GIS DB) 및 표출
- 수집한 자료(종이지도, 이미지 파일, 전자지도 등)를 바탕으로 교통주제도와 비교, 조사대상을 선택하고 대상의 선형 및 위치를 공간자료화(GIS) 하는 기능
- 단위조사별 조사대상 공간자료화 및 ArcGIS Server 기술을 이용한 공간DB에 입력하는 기능
- 입력한 대상 시설물에 대한 선형정보(GIS 자료) 및 속성정보(도로 속성 등)를 기존 교통주제도와 함께 표출하는 기능

- ③ 수집자료 이력관리 및 통계
- 수집 단위 자료별 이력관리(제공일시, 자료형태, 협조기관 등)
- 각 단위업무별 자료통계 및 리스트 표출 기능
- 수집자료 및 수집 자료 GIS 자료화 결과의 통계추출 기능
- 4) 조사지원시스템의 세부 기능 정의(조사 업무 관리)
- ① 조사계획 및 공정 수립
- 조사대상 자료화 및 통계자료를 바탕으로 한 조사계획 수립 기능
- 각 단위 조사에 대한 공정을 생성하는 기능
- ② 조사업무 추진현황 표출(공정률 포함)
- 단위 조사 및 전체 조사 업무에 대한 계획 대비 추진현황 관리 기능
- 단위 조사 및 전체 조사 업무에 대한 추진현황(공정률) 표출
- ③ 조사업무 관련 이력관리 및 통계
- 단위 조사 및 전체 조사 업무에 대한 이력(게시판 형태) 입력/관리/표출 기능
- 조사업무 및 공정 관련 통계자료 생성 및 표출 기능
- 5) 조사지원시스템의 세부 기능 정의(조사 결과 관리)
- ① 조사업무 산출물 관리(입력, 저장)
- 단위 조사 및 전체 조사 업무에서 산출되는 자료의 입력/관리/저장 기능
 - 조사산출물(원장, GPS 포인트, 트랙로그 등) 입력/관리
- ② 조사업무 산출물 표출
- 조사산출물의 화면 및 출력 표출 기능
- ③ 조사업무 산출물 통계
- 조사산출물을 기반으로 한 조사결과 통계자료 생성 기능

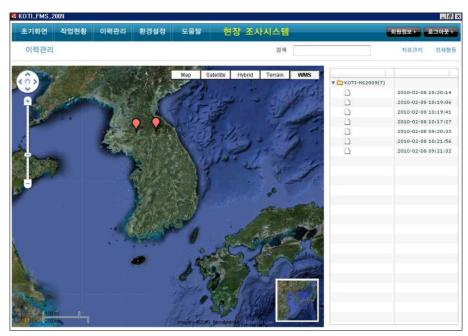
나. 국가교통DB(Web GIS)와 연동

- 1) KTDB Web GIS 시스템과 연계
 - 교통시설물 조사 및 교통주제도 구축 후 서비스 되는 Web GIS 자료와 직접적으로 연 계될 수 있도록 교통주제도 레이어를 중심으로 공간DB 상에서의 연계가 필요함
 - 조사, 구축, 표출(웹서비스)이 일련의 공간DB를 기반으로 수행될 수 있도록 시스템을 설계하고 공정을 구현하는 것이 필요함

<그림 3-35> 조사지원시스템, 현장조사시스템 및 KTDB 웹서비스 연계 개념도

2) 현장조사시스템과 연계

- 조사지원시스템을 통해 조사의 전체 공정을 관리하고 표출하기 위해서는 현장조사시 스템과 연계가 필요함
- 조사지원시스템에서 직접적인 연계 또는 ArcGIS Server를 통한 공간DB를 활용하는 것이 방안임
- 조사지원시스템을 통해 산출된 조사대상 GIS 자료와 단위 조사별 속성자료(이력 등) 를 조사일정 및 계획, 조사팀 단위로 분배하고 이를 조사에 직접 활용하여 조사결과 를 산출하는 방식으로 연계해야 함
- 조사에 활용되는 대상도로 자료, 이력자료, 조사산출물(GPS 포인트, 트랙로그 등)을 중심으로 연계 가능한 시스템으로 구축


다. 조사지원시스템 시범구축

- 조사/구축 공정 재설계에 적합한 조사지원시스템을 시범적으로 구축하여 활용성을 검 토하고 향후 전체 구축의 가능성을 제시함
- 설계된 기능 전체를 구현하기 보다는 기본적인 조사/구축 공정 진행 기능에 초점을 맞추어 구현함
- 1) 로그인 : 사용자별 권한 및 프로젝트 배정

<그림 3-36> 로그인

2) 이력관리 : 작업 공정/프로젝트 별 체계적 이력관리 지원

<그림 3-37> 이력관리 기능

3) 업무지원 초기화면 : 최근소식 및 최근작업 이력정보 표출

<그림 3-38> 업무지원 초기화면

4) 조사현황 : 전체 프로젝트에 할당한 작업 및 정보 표출

<그림 3-39> 조사현황

- 5) 조사/구축 업무 관리
- ① 자료등록: 특정 프로젝트에 필요한 제반 파일 등록

<그림 3-40> 자료등록

② 조사현황 조회 : 각 조사공정에 할당된 작업 및 정보 표출

<그림 3-41> 조사현황 조회 화면

③ 조사업무 추가 : 특정 프로젝트에 해당하는 신규작업 추가

OTI_FMS 초기화면	_2009 작업현황	이력관리	환경설정	도움말	현장 조사시스	4	회원정보 ▶	로그아웃 >
V: 9965	NS2009/NS	(0.100.959)			2d		자료관리	전체활동
BIK	작업내역	작업 조	다입추가 소 스	문사	관련파일 저장소	설정		
작업추가								
			구분*	10				
			제목*	01-04-01-월경경	K		ĺ	
			설명					
	상태* 1	[*]			시작시간	2010-02-08		
우선:	순위*	I *)			완료기한			
담	당자	[•]			예상시간			
					완료%	0 🔻		
승인	여부 🗌							
	다른 파	일 추가						
작업 감시	설정							

<그림 3-42> 조사업무 추가 화면

5) 작업파일 저장소

○ 특정 프로젝트의 체계적인 작업파일 버전관리를 위한 저장소 지정

<그림 3-43> 작업파일 저장소 화면

바. 조사시스템 확장 및 개선

- 조사/구축 공정 재설계를 통해 조사시스템의 개산사항을 도출하였고 이에 따른 조사 시스템의 확장 및 개선방안이 필요함
- 기존 조사시스템의 개선사항은 <표 3-8>과 같음

<표 3-8> 조사시스템 개선사항

 항목	개선 필요 사항		
교통수단	- 차량에 독립적인 조사시스템 구축		
	- 1인 1조사 시스템 구축		
검수	- 조사/검수/구축 공정을 효율적으로 개선(시간, 인력비용 감축)		
조사 결과 자료화 - 조사원의 주관적인 개입을 최대한 배재할 수 있는 시스템 구축			
	- 소형/경량/1인용 조사시스템		
	- 실시간 DB연동 시스템		
	- 편리하고 유연한 사용자환경 시스템		
조사 시스템	- 개별 시설물 조사에 특화된 조사시스템 개발		
	- 조사자료관리시스템 구축		
	- 도면관리시스템 구축		
	- 도면전산화		

1) 조사업무별 조사시스템 적용방안

- 교통시설물 조사는 크게 신설 및 변경도로 신규조사, 기존 도로 갱신조사, 도로 및 교통시설물 조사로 구분할 수 있음
- 각 조사는 조사내용에 따라 최적화된 조사시스템을 구현하여 효율적인 조사를 수행할 수 있음

① 신설 도로 조사 및 DB구축

- 신설 및 변경도로의 조사는 도로의 선형 및 속성, 관련시설물의 조사가 포함됨
- 신설 및 변경도로는 도로등급 및 지역별 교통상황 특성을 고려하여 조사시스템을 적 용하여야 함
- 차량이동이 용이하고 조사연장이 비교적 긴 경우, 차량과 노트북을 이용한 조사를 수 행할 수 있으며 주로 고속국도, 일반국도, 국가지원지방도, 지방도의 조사에 적용 가 능함
- 교통상황이 복잡한 도심부(특별시, 광역시)의 경우, 외곽의 차량조사와 병행하여 자 전거 또는 도보조사를 적용하는 것이 효율적임
- 특히 레벨 1 교통시설물 조사의 경우, 주 조사방법으로 도보조사를 활용하는 것이 효 율적임
- 신설도로의 조사는 조사 원시자료 및 조사원장(형태무관)의 작성이 필수적임

② 기존 도로 속성 갱신 조사

- 기존 도로의 선형 혹은 속성이 변경된 경우에는 비교적 간단한 단말기를 활용하여 조 사 후 조사결과를 반영하는 것이 가능함
- 기존에 구축된 공간DB가 있으므로 이를 활용하는 조사가 가능함
- 조사원장 없이 대상도로에 대한 조사자료 사전 입력만으로 조사가 가능함
- ㅇ 이동수단은 차량, 자전거, 도보 등 다양하게 적용 가능함
- ㅇ 단말기는 이동수단에 적합한 시스템을 적용 가능함

- ③ 도로 및 교통시설물 조사 및 DB구축
- 교통시설물은 도로와는 달리 주로 점, 면의 형태로 구성되기 때문에 선형보다 움직임 이 적은 조사대상임
- 점 및 면 형태로 구성된 조사대상을 단말기와 GPS 등 장비로 관측하고 속성입력하여 바로 DB구축 또는 갱신이 가능함
- ㅇ 이동수단은 차량, 자전거, 도보 등 다양하게 적용 가능함
- 휴대가 가능한 조사단말기(스마트폰, PMP 등)를 활용하여 조사를 수행할 수 있음
- 2) 단말기별 조사시스템 적용 방안
 - 각 조사업무의 특성과 이동수단에 따라 이에 적합한 조사용 단말기를 적용할 수 있음
- ① 스마트폰
- 주로 자전거 및 도보 조사에 활용 가능함
- 교통시설물(신호등, 표지판 등) 조사에 휴대용으로 활용 가능함
- ② PMP
- 자전거 및 차량 조사에 활용 가능함
- 교통시설물, 기존 도로 속성 갱신 조사에 활용 가능함
- ③ UMPC/노트북
- 차량을 이용한 조사에 활용 가능함
- 상시전원을 사용 가능한 조사에 활용 가능함
- 신설 및 변경도로 조사에 적합한 조사단말기임

<표 3-9> 단말기별 조사 활용

 단말기	조사활용	조사대상
노트북 UMPC	- 디지털 조사원장과 기존 조사시스템을 통합 개발 - 기존 전국 주요도로 조사에 활용	레벨 2 도로망차량만 진입가능한도로 조사
PMP	- 소형 경량 단말기의 특성을 활용 - 개인이동수단을 활용한 조사에 사용 - 레벨 1 도로망 조사에 활용	- 레벨 1 도로망 - 교량, 터널 지하차도
스마트폰	- 개인용 휴대단말의 특성을 최대한 활용 - 자전거 및 도보조사에 활용	- 레벨 1 도로망 - 신호등, 횡단보도, 표지판

3) 조사 교통수단별 조사시스템 적용 방안

- 기존 조사팀은 차량 1대에 운전자, 조사자 2인으로 구성됨
- 레벨 1 교통시설물 조사팀은 운전자, 조사자(4~5인)로 구성함
 - 차량조사팀 : 기존 레벨 2 도로망 조사 운영
 - 자전거조사팀 : 레벨 1 도로망(신호등, 이면도로, 단지내 도로 등)
 - 도보조사팀 : 레벨 1 도로망(버스/택시 정류장, 지하철역 환승시설 등)

<표 3-10> 교통수단별 조사팀 구성(안)

 구분	조사대상	단말기 및 장비	조사 인원수
차량	- 기존 도로망(간선도로) 조사 - 자동차 전용 도로망 등 조사	- UMPC 1대, PMP 1대, GPS(유/무선)	2
 자전거	- 레벨 1 도로망, 교통시설물 조사	- PMP 1대, 스마트폰 1대, GPS(무선)	1
도보	- 레벨 1 도로망, 교통시설물 조사	- 스마트폰 1대, GPS(무선)	1

4) 현장조사시스템 개선(안)

- 기본적으로 조사시스템의 근간이 되는 ESRI 사의 ArcPad는 윈도우 운영체제에서는 플랫폼에 제한 없이 구동이 가능함
- 사용하는 단말기의 종류와 운영방식에 따라 적합한 사용자 환경을 개발해야겠지만 기 본적인 자료의 운영 특성은 동일함
- 단말기의 종류에 상관없이 조사시스템을 개발할 수 있는 유연한 환경을 제공함

○ 다양한 단말기의 자료를 수집하고 취합하는 조사지원시스템의 개발을 통해 정규화된 조사자료의 구축이 가능함

① 조사 S/W

- 지금까지 활용하던 조사 S/W는 ESRI사의 Arcpad 6.1임
- ArcPAD는 윈도우 모바일 이상의 운영체계에서 모두 활용 가능한 S/W임
- 실시간 DB 연동을 위한 ArcGIS Mobile을 병행하여 사용할 수 있도록 S/W를 개발함
- 스마트폰 등 터치스크린 방식의 모바일 기기의 활용성을 극대화할 수 있는 조사전용 S/W를 개발함

② 도면전산화 및 도면관리시스템

- 기존 종이도면을 활용하는 조사시스템은 조사속도와 조사원의 입력에서 발생하는 시 차와 각종 오차로 S/W 만을 조사에 활용할 수 없어서 대용된 것임
- 조사속도와 특성, 사용자입력환경 개선을 통해 도면이 불필요한 조사대상에 대해서는 도면을 사용하지 않는 시스템으로 전환함
- 도면이 반드시 필요한 조사의 경우, 도면 자체를 입력과 동시에 디지털화 할 수 있는 방안을 마련하여 조사 후 자료화에 소요되는 시간과 노력을 줄임

③ 조사지원시스템과의 연계

- 조사지원시스템(조사포털시스템)과 단말기 조사시스템을 통합하여 자료의 전송 및 활용에 효율적으로 시스템을 구성함
- 5) 지오태그(Geo-Tag) 이미지 DB 구축
 - 최근 일반사용자들 사이에서 디지털 SLR 카메라의 보급이 확대됨에 따라 촬영위치를 좌표로 기록할 수 있는 장비들이 증가하고 있음
 - 유무선 GPS를 카메라에 별도로 장착하여 디지털 사진에 위치정보(GeoTag)를 저장하여 사진촬영 지점을 기록하는 방식임

- 이는 구글어스 및 공개된 인터넷 지리정보서비스에서 스트리트 뷰(Street View)와 같은 형태로 일반인에게 서비스되고 있으며 간편하면서 효율적인 DB구축의 방안으로 급부상중임
- 유무선 GPS를 사용하는 DSLR 카메라는 성능이 우수하나 고가이고, 장비의 부피로 인해 휴대가 불편한 문제점이 있으나, 최근 출시한 카메라의 경우, 일반디지털 카메 라이나 GPS가 내장되어 있는 경우도 있음
- 조사대상이나 조사구간에 대한 특이사항 및 시설물 현황을 지오태그 이미지 파일로 기록하고, 조사대상구간을 동영상으로 촬영하면 조사현장의 상황을 기록하여 보관하 고 추후 확인하는데 유용하게 활용할 수 있음

5) 교통조사 및 구축 업무 활용 방안

- 교통관련 조사 및 내업은 기본적으로 공간정보 혹은 지리정보시스템과 밀접한 관계를 갖고 있음
- 조사지원시스템과 같이 특화된 각각의 업무를 웹기반의 공간정보 활용이 가능한 지원 시스템으로 구축한다면 조사 및 DB구축 업무의 효율성을 향상시킬 수 있음
- 통행 조사 등 현장조사를 기반으로 한 DB구축은 더욱 지리정보 활용 효과를 극대화 할 수 있음
- 국가교통조사를 통해 생성되는 각종 산출물 및 결과물, 통계자료를 지리정보와 통합
 하여 출판하고 조사 및 관리공정에서 사용할 수 있는 조사지원시스템을 개발함
- KTDB 포털(국가교통조사 포털)은 3가지 시스템으로 구성됨
 - 조사지원시스템 : 조사공정의 자료수집, 공정관리를 수행할 수 있는 전사적인 연구 지원시스템
 - 자료관리시스템 : 조사 및 구축과정에서 생성되는 자료만을 집중적으로 관리할 수 있는 시스템
 - 웹서비스시스템 : 조사 및 DB구축 결과물을 대외적으로 서비스 할 수 있는 시스템
- 앞서 언급한 바와 같이 기존의 홈페이지에 한정되어 있던 시스템을 조사 및 구축공 정, 자료관리, 그리고 자료의 인터넷 제공까지 총괄할 수 있는 통합관리시스템을 구 축하는 것을 목표로 함

○ 모든 교통관련 조사자료 및 통계자료는 지리정보와 결합하여 활용하는 것을 원칙으로 하고 메인시스템에 ESRI ArcServer 시스템을 도입함

① KTDB 웹서비스 시스템

- 기존 단독으로 운영되는 교통주제도 Web GIS 시스템을 KTDB 포털시스템과 통합하여 자료제공은 물론 조사지원시스템, 자료관리시스템 등과 함께 통합 운영 체계로 구성함
- 웹서비스 시스템의 근간이 되는 교통주제도는 단일 공간DB로 구성하여 조사뿐만 아 니라 웹서비스에도 직접 연결되어 조사 및 구축결과가 실시간으로 갱신될 수 있도록 함

② 자료관리시스템

- 국가교통DB 센터의 업무 전 영역을 지원할 수 있는 업무 및 자료관리시스템을 구축
- 각 조사 및 업무 절차별, 기능별로 지원시스템을 구축하고 지식기반서비스 기능을 추 가하여 관련자료를 통합관리함

③ 조사지원시스템

- 교통조사(교통시설물 조사 포함)의 전체공정을 운영, 관리할 수 있는 개념의 시스템 을 도입함
- 조사에서 산출되는 자료 및 각종 참고자료를 지리정보(교통주제도 및 위성영상 등)과 결합하여 통합정보시스템으로 구축
- 실시간DB 연동기술, 지오태그 이미지 DB 등을 추가적으로 표출할 수 있도록 구성하여 시각적이고 직관적인 체계를 구축함
- 조사 단말기(시스템)와 직접적으로 통합, 연계될 수 있는 시스템을 구축함
- 조사지원시스템을 구축하고 조사공정을 개선하여 조사 및 검수, 자료구축에 할당되는
 시간, 인력, 재원을 효율적으로 관리하고 공정을 단축하여 비용 대비 DB구축의 효율성을 증대시킴
- 교통시설물 조사를 통해 시스템을 구축하고 실용성을 검증한 후 국가교통 조사 및 각 종 관련 업무에 점차적으로 적용함