제3장 교통주제도 구축

제1절 교통주제도 구축 개요

제2절 교통주제도 구축 과정 및 방법

제3절 교통주제도 검수

제4절 교통주제도 구축 결과

제5절 교통주제도 세계측지좌표계 전환

제3장 교통주제도 구축

제1절 교통주제도 구축 개요

1. 배경 및 목적

- 교통시설물 조사결과를 교통주제도에 반영하고 이를 DB화함으로써 교통주제도의 현 시성을 확보하고 교통주제도의 공간 및 속성정보의 오류를 검사하여 교통주제도의 신 뢰성을 확보하고자 함
- 또한, NGIS 축척 1:5,000 수치지도 또는 위성영상으로부터 도로 등 지형지물을 추출하고 기하학적 위상을 부여하여 각종 교통계획 및 교통공학에 사용될 정보를 제공하며, 교통주제도를 기반으로 하는 교통분석용 네트워크의 구축을 통하여 각종 교통관련 투자사업 분석의 객관성을 확보하고자 함

2. 교통주제도 구축 범위

- 기 구축한 교통주제도의 속성 및 선형 정보를 보완 및 갱신하는 작업으로 현장조사와 문헌조사를 통하여 새로이 획득한 교통주제도의 속성과 주요 교통 및 일반시설물 그리고 교통망 정보를 교통주제도에 반영함
- 교통주제도 구축의 공간적 범위는 수도권 및 광역시를 포함하는 전국이며 구축 기준 년도는 2005년 12월임
- ㅇ 교통주제도의 보완 갱신 범위는 다음과 같음
 - 기존 교통주제도의 보완·갱신
 - 신설 및 변경도로의 선형 및 속성정보 갱신(준공도로, 보완도로, ITS 표준노드/링 크, NGIS 도로, 위성영상 추출도로)
 - 문헌자료를 통한 속성정보 보완ㆍ갱신

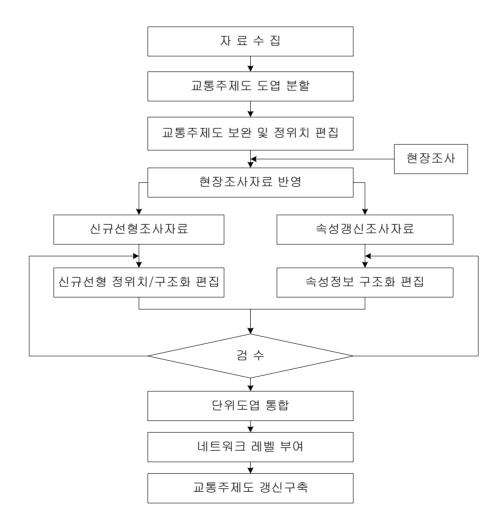
3. 교통주제도 구축 내용

가. 기 구축 교통주제도의 보완

- 기 구축 교통주제도의 공간 및 속성정보 갱신구축
 - 교통주제도 구축 및 검수 기준에 따른 무결점 데이터로의 보완・수정
- ㅇ 유관기관의 자료를 통한 교통주제도 보완 및 갱신
 - 통계청 행정경계 수치지도를 교통분석용 네트워크 존체계에 적합하도록 편집/구축

나. 교통시설물 조사를 통하여 현재성이 반영된 교통주제도의 구축

- 교통시설물 조사결과를 이용하여 교통주제도를 갱신함
- o GPS 측량을 통한 신규선형 반영
 - 전국 범위로 신설 및 변경된 도로를 조사하여 반영
 - 각 지자체 및 지방국토관리청의 준공도로를 우선하여 반영
- o 누락 및 신설·변경 도로의 확인 및 반영
 - ITS 표준 노드/링크 DB를 활용하여 신설 및 변경된 도로 조사 및 반영
 - 최신 도로지도 등 문헌자료와 교통주제도를 비교하여 누락도로 확인 및 현장조사를 통화 반영
 - 고해상도 위성영상을 이용한 신규 도로 추출 및 반영(경상권)


다. 자료의 검수 및 보완

- 교통주제도 구축 및 검수 기준에 따른 검수방법 적용
- 교통주제도의 기본이 되는 노드와 링크를 대상으로 오류유형에 따른 검수항목과 절차 및 방법을 설정하여 전체 교통주제도에 대하여 논리오류검수를 실시함
- 단위도엽 및 전국통판을 대상으로 항목별 논리오류검수를 수행함
- ㅇ 교통주제도의 논리오류검수는 전수검수로 하며, 논리적 정확도는 100% 만족해야 함

제2절 교통주제도 구축 과정 및 내용

1. 교통주제도 구축 과정

○ 교통주제도의 구축과정은 〈그림 3-1〉과 같이 자료수집·도엽분할 등 준비단계와 신설 및 변경 도로현황 적용, 현장조사 자료 작성 등 조사 전 사전작업단계, 신규노선에 대한 공간정보 정위치·구조화작업, 속성정보의 구조화 편집 등 조사 후 입력작업 단 계, 교통주제도 통합 및 네트워크 레벨부여 단계로 나눌 수 있음

<그림 3-1> 교통주제도 구축과정

2. 교통주제도 구축 내용

가. 자료수집 및 교통주제도 단위도엽분할

- 교통주제도는 각종 문헌자료 및 참고자료 그리고 유관기관의 협조자료를 참조하여 구축함
- 자료수집은 크게 교통시설물 조사를 위한 사전준비단계 및 교통주제도 갱신을 위한 참고자료 수집으로 구분됨
- 교통시설물 조사 및 교통주제도 구축을 위해 사용된 참고자료는 다음과 같음
 - 16개 시·도 및 국토관리청의 준공도로 현황 및 위치도(2005년 12월 31일 기준)
 - 문헌자료(각종 도로지도 및 도로교통량 통계연보)
 - ITS 표준 노드/링크 DB(건설교통부 건설교통종합정보센터)
 - NGIS 도로 데이터 (국토지리정보원 지리정보과)
 - 고해상도 위성영상 도로 데이터 (IKONOS 위성영상)
- 교통주제도는 1:5,000 축척 도엽을 기준으로 구축되고 있으나 자료관리의 효율성을 위해 1:25,000 축척 도엽을 기준으로 함
- 교통주제도 구축의 기본단위는 1:25,000 축척 도엽이며 교통시설물 조사를 위한 사전 작업(조사원장 작성 등), 교통주제도의 조사자료 반영 및 편집 작업 또한 도엽단위로 수행됨
- 단위도엽을 기준으로 작성된 교통주제도는 최종적으로 모든 도엽을 결합하여 하나의 통판DB로 구축됨

나. 교통주제도 보완 및 정위치 편집

- 교통주제도를 구축하는데 활용되는 각종 참고자료 및 유관기관의 협조자료는 각각 상 이한 자료구조와 좌표계를 가짐
- 참고자료 및 협조자료 중 도로의 선형을 그대로 활용할 수 있는 경우(NGIS 수치지도 등)에는 교통시설물 조사 전 준비단계에서 정위치 편집을 통해 반영함

다. 현장조사자료를 이용한 교통주제도 갱신/구축

- 현장조사자료는 준공도로, 보완도로, ITS 표준노드/링크 갱신자료, NGIS도로, 위성 영상 신설도로를 기반으로 현장조사를 수행하여 수집된 도로의 선형 및 속성정보를 의미함
- 교통시설물 조사를 통하여 취득된 신설 및 변경된 도로망의 선형 및 속성정보를 이용 하여 교통주제도의 선형과 속성을 보완 및 갱신함
- 교통주제도의 구축방법 및 기준은 『교통주제도 구축지침』에 따름
- 신규선형조사 방법 및 과정은 〈그림 3-2〉와 같음

<그림 3-2> GPS를 이용한 신규선형 취득과정

○ 속성에 대한 수정·갱신 항목은 차로수, 일방통행 유무, 도로번호, 도로명칭, 도로등급, 유료도로 유무, 제한최고속도, 버스전용차로 유무, 가변차로수, 자동차전용도로유무, 중용정보 등의 링크속성과 노드유형, 교차로명, 회전정보유무, 회전정보 등의노드속성으로 구성되며, 구체적인 항목 및 내용은 〈표 3-1〉과 같음

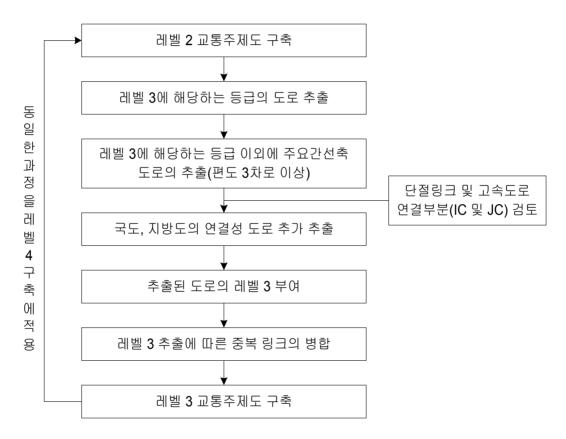
<표 3-1> 속성에 대한 갱신 항목

조사/갱신대상		조사/갱신항목	비고
	회전정보	회전정보유형	좌회전금지, 직진금지, 우회전금지, 유턴허용
	중용정보	중용정보	중용도로수 및 중용정보
		차로수	상하행구분 및 전체 차선수
		일방통행 유무	상하행 구분 일방통행 유무
		도로번호	현장조사 및 문헌조사
		도로명칭	시스템에서 일괄처리
	링크일반	도로등급	고속국도, 도시고속화도로, 일반국도, 특별/광역시도, 국가지원지방도, 지방도, 기타 도로
교통망		제한최고속도	상하행구분
		버스전용차로 유무 자동차 전용도로 유무 유료도로의 유무	상하행구분
		가변차로수	가변차로수, 상행차로수에 포함
		노드유형	도로교차점, 도로시종점, 속성변환점, 행정경계점, 도곽교차점, 도로종료점, 더미노드
	노드일반	교차로명	현장조사 및 문헌조사
		회전제한	회전정보

라. ITS 표준 노드/링크 DB와 비교를 통한 속성갱신

- 2006년 1월 12일에 배포된 ITS 표준 노드/링크 DB와 교통주제도를 비교하여 도로등 급 및 도로번호가 상이한 구간을 추출하고, 이를 현장조사 및 문헌자료를 참고하여 갱신함
- 2006년 1월 12일에 배포된 ITS 표준 노드/링크 자료는 다음 대상지역에 대한 해당 지 방자치단체의 검토의견이 반영된 자료임
 - 대상지역 : 고양시, 과천시, 성남시, 수원시, 안양시, 군산시, 전주시, 제주시, 대 전광역시, 충주시, 원주시, 울산광역시

마. 통계청 행정경계 수치지도를 활용한 행정경계 레이어 구축


- 통계청(통계지리정보과)에서 구축, 관리하고 있는 행정경계(시·도, 시·군·구, 읍·면·동) 지리정보자료를 협조받아 행정경계 레이어 구축에 활용함
- 새로이 분할된 지역에 대한 반영, 행정구역 명칭 변경내역 등을 참조하여 교통주제도에 반영하고, 이를 이용하여 교통분석용 네크워크의 교통존 및 존 센트로이드 레이어 작업을 수행함

<표 3-2> 행정구역 변경 반영내역(2005년 12월 31일 기준)

시도	시군구	변경전	변경 후	변경내역	변경일자
 서울	중구	을지로 3·4·5	을지로동	명칭변경	2005. 03. 15
대전	서구	관저동	관저 1·2동	분동	2005. 02. 04
인천	서구	검단 1・2 동	검단 1 · 2 · 3 동	분동	2005. 09. 01
부산	서구	반여 1・2・3 동	반여 1・2・3・4 동	분동/편입	2005. 09. 05
광주	서구	금호동	금호 1·2동	분동	2005. 07. 04
	성남시 분당구	금곡동	금곡 1 · 2동	분동	2005. 03. 21
	고양시	일산구	일산 동구·서구	분구	2005. 05. 16
	고양시 일산동구	일산 2동	중산동	부분 편입	2005. 05. 16
	고양시 일산서구	일산 4동	정발산동	명칭변경	2005. 05. 16
		포곡면	포곡읍	승격	2005. 12. 31
		-	기흥구	비자치구 신설	2005. 12. 31
			신갈동		2005. 12. 31
			구갈동		2005. 12. 31
경기		기흥읍	상갈동	분동	2005. 12. 31
경기 -			기흥동		2005. 12. 31
	용인시		서농동		2005. 12. 31
	용인시		구성동		2005. 12. 31
		7110	미북동	분동	2005. 12. 31
		구성읍	어정동	工0	2005, 12, 31
			보정동		2005. 12. 31
		-	수지구	비자치구 신설	2005. 12. 31
		풍덕천 2동	풍덕천 2동, 신봉동	분동/편입	2005. 12. 31
		상현동	상현 1·2동	분동/편입	2005. 12. 31
충북	충주시	상모면	수안보면	명칭변경	2005. 04. 01
		중앙동, 태평동	중앙동	합동	2005. 08. 01
		풍남동, 교동	풍남동	합동	2005. 08. 01
전북	전주시 완산구	중노송 1·2동	노송동	합동	2005. 08. 01
		남노송동, 서노송동			
		동완산동, 서완산동	완산동	합동	2005, 08, 01
	전주시 덕진구	진북 1 · 2동	진북동	합동	2005. 08. 01
경북_	안동시	서구동, 법상동	서구동, 강남동	명칭변경/편입	2005, 09, 01

바. 구조화편집 후 레벨부여

- ㅇ 교통주제도는 분석목적 및 도로등급 등의 기준에 따라 1부터 4까지의 레벨을 가짐
- 지역적 범위에 따른 개별적인 분석을 위해 네트워크를 구축할 때 도로의 기능별, 위계별로 구분된 레이어 (layer)가 필요하며 인터넷 서비스를 위한 시스템에서도 해상도에 따른 적절한 도로망 레이어를 제공할 필요가 있음
- ㅇ 레벨 부여기준 및 방법은 「교통주제도 구축지침」을 따름

<그림 3-3> 교통주제도 레벨부여절차

<표 3-3> 레벨별 분석범위 및 해당도로

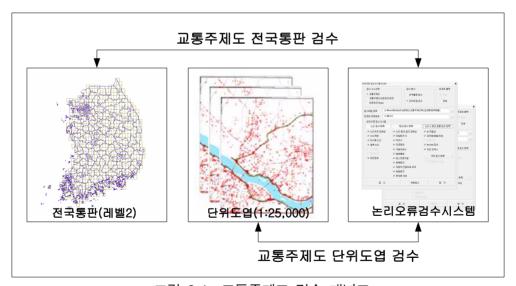
레벨	분석범위	축척(개략)	해당도로	교통 분석용도
4	지역간 교통계획/분석	1:250,000	고속국도, 일반국도 고속국도, 일반국도 연결도로 특별시/광역시 주요 간선축도로	국가기간망계획, 장기교통시설투자계획, 대규모중기투자계획
3	권역 교통계획/분석	1:50,000	고속국도, 일반국도, 지방도 고속국도, 일반국도 연결도로 지방도, 특별시/광역시/일반시의 주요간선축도로	소규모 국가기간망 개선/확장계획, 중기교통 시설투자계획, 권역별 교통시설 타당성평가, 교통축 계획
2	지역내 교통계획/분석	1:25,000	대중교통이 다니는 양방향 2차선 도로(이면도로제외)	지역내 교통시설 투자 타당성평가, 교통정비계획
1	상세 교통분석/표출	1:5,000	전국 도로망(포장도로)	교통체계개선사업, ITS, 단지/지구계획, 교통영향평가

<표 3-4> 레벨별 해당도로 추출

레벨	해당도로						
데필드	전국도로	특별시, 광역시	기타 시/군				
4	고속국도, 일반국도	도시고속화도로 8차선 이상(간선축도로)	국도의 연결성 도로 6차선 이상(간선축도로)				
3	고속국도, 일반국도, 국가지원지방도, 지방도	도시고속화도로 6차선 이상(간선축도로)	국도, 지방도의 연결성 도로 4차선 이상(간선축도로)				
2	전체 도로망 (교통주제도)	전체 도로망 (교통주제도)	2차선 이상 도로				

주: 1) 간선축도로 차선은 고가차도 및 지하도차선을 포함

제3절 교통주제도 검수

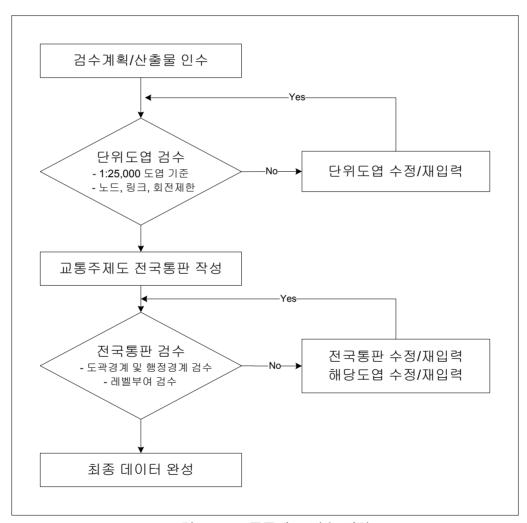

1. 교통주제도 검수 개요

가. 교통주제도 검수목적

- 신규선형 및 속성자료의 입력, 노드/링크 ID부여, 회전정보의 반영 등 교통주제도 구축과정에서 발생할 수 있는 오류를 일괄적이고 체계적으로 검수함
- 이를 통하여 현장조사 결과를 반영한 교통주제도의 객관적이고 신뢰성 있는 품질확보 및 효율적 관리를 도모하고자 함

나. 교통주제도 검수내용 및 범위

- 교통주제도의 기본 자료인 노드와 링크를 대상으로 오류 유형에 따른 항목, 절차 및 검수방법을 설정하고, 논리적 오류 검사를 실시하여 발견된 오류를 수정함
- 검수의 범위는 교통주제도 구축의 기본단위인 단위도엽(1:25,000)과 전국이며, 레벨2 를 기준으로 노드, 링크 속성 및 회전 규제 정보에 대한 입력사항을 검수함



<그림 3-4> 교통주제도 검수 개념도

2 교통주제도 검수절차 및 방법

가. 교통주제도 검수절차

- 구축된 교통주제도의 검수 및 검수결과의 반영과정은 〈그림 3-5〉와 같으며, 검수내용은 노드ID/인접 링크수/회전정보 유무 등의 노드부문 검수와 상하행 참조 노드ID/도로명칭/ 일방통행 방향성 등의 링크부문검수, 회전규제 방향성/참조 노드ID 등의 회전규제 부문 검수로 분류됨
- 전국통판 검수는 도곽경계 및 행정경계 검수, 레벨부여 검수를 수행함

<그림 3-5> 교통주제도 검수 절차

나. 교통주제도 검수 내역 및 방법

- 1) 논리검수 테이블 리스트
 - 논리검수의 대상이 되는 교통주제도의 교통망 테이블은 다음과 같음

<표 3-5> 논리검수 대상 링크 테이블 리스트

정의		레벨2 링크	<u> </u>				
테이블명	AD0022						
속성 ID	속성명	속성유형	키	필수	비고		
SHAPE_ID	그래픽 고유 ID	NUMBER (38)					
LINK_ID	링크 ID	CHAR (13)	PK	NN			
UP_FROM_NODE	상행시작노드	CHAR (13)	FK		AD0102 (NODE_ID)		
UP_TO_NODE	상행종료노드	CHAR (13)	FK		AD0102 (NODE_ID)		
DOWN_FROM_NODE	하행시작노드	CHAR (13)	FK		AD0102 (NODE_ID)		
DOWN_TO_NODE	하행종료노드	CHAR (13)	FK		AD0102 (NODE_ID)		
UP_LANES	상행차선수	NUMBER (2)					
DOWN_LANES	하행차선수	NUMBER (2)		NN			
LANES	전체차선수	NUMBER (2)		NN			
REVERSIBLELANE	가변차로수	NUMBER (2)		NN			
UP_MAXSPEED	상행제한최고속도	NUMBER (3)		NN			
DOWN_MAXSPEED	하행제한최고속도	NUMBER (3)		NN			
ROAD_NAME	도로명칭_현장조사	VARCHAR2 (30)					
ROADNAME_ALIAS	도로명칭_새주소	VARCHAR2 (30)					
ONEWAY	일방통행유무	CHAR (1)		NN	코드테이블 참조		
ROAD_NO	도로번호	VARCHAR2 (13)					
ROAD_RANK	도로등급	CHAR (3)		NN	코드테이블 참조		
ROAD_ADMIN	도로관리기관	VARCHAR2 (30)					
AUTOEXCLUSIVE	자동차전용도로유무	CHAR (1)		NN	코드테이블 참조		
UP_CLIMBINGLANE	상행오르막차선유무	CHAR (1)		NN	코드테이블 참조		
DOWN_CLIMBINGLANE	하행오르막차선유무	CHAR (1)		NN	코드테이블 참조		
UP_BUSLANE	상행버스전용차로유무	CHAR (1)		NN	코드테이블 참조		
DOWN_BUSLANE	하행버스전용차로유무	CHAR (1)		NN	코드테이블 참조		
DATAHISTORY_ID	데이터이력 관리 ID	VARCHAR2 (15)	FK	NN	DATA HISTORY		
OVERROAD_CNT	중용도로수	VARCHAR2(1)					
NEWROAD	신규도로여부	CHAR (1)		NN	코드테이블 참조		
REFROAD	누락도로여부	CHAR (1)		NN	코드테이블 참조		
DISTRICT_ID	행정구역 ID	VARCHAR2 (13)	FK	NN	EA001G		
NETWORK_LEVEL	교통망레벨	NUMBER (1)		NN	MAP_TRA_co048		
LENGTH	길이	NUMBER (7, 1)		NN			
RAMP	연결접속부유무	CHAR (1)		NN	MAP_TRA_co029		
ROADCAPACITY	링크용량	NUMBER (4)					
UPLINK_ID	상위레벨링크ID	VARCHAR2 (13)					
MAPINDEX_ID	MAP INDEX ID	VARCHAR2 (8)	FK	NN	ZD002G		

<표 3-6> 논리검수 대상 노드 테이블 리스트

정의	레벨2 노드						
테이블명	AD0102						
속성 ID	속성명	속성유형	키	필수	비고		
SHAPE_ID	그래픽 고유 ID	NUMBER (38)					
NODE_ID	노드 ID	CHAR (13)	PK	NN			
NODE_TYPE	노드유형	CHAR (3)		NN	코드테이블 참조		
NODE_NAME	교차로명_현장조사	VARCHAR2 (30)					
NODENAME_ALIAS	교차로명_새주소	VARCHAR2 (30)					
APPROCHES	접근로수	NUMBER (1)		NN			
RESTRICTEDTURN	회전정보유무	CHAR (1)		NN	코드테이블 참조		
DISTRICT_ID	행정구역 ID	VARCHAR2 (13)	FK	NN	EA001G		
JOINNODE_ID	인접연결노드	CHAR (13)					
NETWORK_LEVEL	교통망레벨	NUMBER (1)		NN			
MAPINDEX_ID	MAP INDEX ID	VARCHAR2 (8)	FK	NN	ZD002G		
REMARK	山고	VARCHAR2 (30)					

<표 3-7> 논리검수 대상 회전제한 테이블 리스트

정의	회전제한					
테이블명		TURN_INFO)			
속성 ID	속성명	속성유형	키	필수	비고	
TURN_ID	회전제한 ID	VARCHAR2 (15)	PK	NN		
NODE_ID	노드 ID	CHAR (13)		NN	AD0102 (NODE_ID)	
IN_LINK	시작링크	CHAR (13)		NN		
OUT_LINK	도착링크	CHAR (13)		NN		
TURN_TYPE	회전유형	CHAR (3)			코드테이블 참조	
NETWORK_LEVEL	교통망레벨	NUMBER (1)		NN		

2) 논리검수 항목 및 방법

○ 교통주제도의 단위도엽, 전국통판 검수항목은 〈표 3-8〉과 같이 구성되며 항목별 검 수방법은 『교통주제도 검수지침』에 준함

<표 3-8> 교통주제도 검수항목 및 내용

구분	검수내용		
	노드/링크ID Null 여부		
	노드/링크ID 중복 여부		
ID적절성	노드ID 적절성 여부 : 최대 자릿수 체크		
IDAEO	링크ID 적절성 여부 : 최대 자릿수 체크		
	노드ID 적절성 여부 : Mapindex 입력오류 체크		
	링크ID 적절성 여부 : Mapindex 입력오류 체크		
	링크시작 노드ID 참조 정확성 여부 : 실제노드ID와의 일치체크		
	링크종료 노드ID 참조 정확성 여부 : 실제노드ID와의 일치체크		
노드/링크 참조정확성	링크 상행 시종점 노드ID 동일 체크		
T-107 11-01-0	링크 하행 시종점 노드ID 동일 체크		
	링크 상행시점/하행종점 노드ID 불일치 체크		
	링크 상행종점/하행시점 노드ID 불일치 체크		
원형링크	원형링크 선형오류 여부		
인접링크수	인접링크수 필드값 적절성 여부		
차선수	상하행차선수합과 총차선수 일치 여부		
지도인덱스	노드 Mapindex_i 속성 정확성 여부		
<u></u>	링크 Mapindex_i 속성 정확성 여부		
	회전규제 레이어 누락여부		
	회전규제 필드값 유효성 여부 : Null 및 0, 1 값 여부		
	회전규제 필드값 적절성 여부 : 필드값과 규제노드수 일치여부		
	노드/회전정보 위치참조 정확성 여부 : 회전규제 노드 존재 여부		
	노드/회전정보 속성참조 정확성 여부 : 회전규제노드ID 존재 여부		
	링크/회전정보 참조 정확성 여부 : 회전규제링크ID 존재 여부		
회전정보	회전규제방향 정확성 여부		
	회전규제ID 중복 여부		
	회전규제ID Null 여부		
	회전규제ID 적절성 여부 : 최대 자릿수 체크		
	회전규제ID 적절성 여부 : 맵인덱스 체크		
	회전규제 유형 적절성 여부		
	회전규제 중복 오류		

<표 3-8> 교통주제도 검수항목 및 내용(계속)

 구분	검수내용			
	도로등급 및 도로명칭 필드값 Null 여부			
도로명칭	도로번호 필드값 입력확인(도로등급 : 101,103, 105, 106)			
	도로명칭 적절성 여부확인(도로등급 101, 103, 105, 106)			
 가변차로수	가변차로수 필드값 적절성여부			
일방통행	Oneway 필드값 유효성 여부 : 0 또는 1			
2000 	Oneway 필드값 적절성 여부 : 0 또는 1			
버스전용차로	버스전용차로 필드값 유효성 여부 : 0, 1, 2			
비 <u>그</u> 선증자도	버스전용차로 적절성 여부			
레벨유무	노드/링크 레벨 필드값 유효성 여부			
川 置	노드/링크 레벨 필드값 적절성 여부			
노드유형	노드유형 필드값 유효성 여부			
±=π8	노드유형 적절성 여부(도로등급 : 101, 103, 104, 107, 109)			
미사용노드	노드 미사용 여부 검수			
- 중복노드	노드 도형정보 중복 여부			
- 중복링크	링크 도형정보 중복 여부			
	노드유형(106) 적절성 여부 : 인접 도곽경계노드 존재 여부			
	노드유형(106) 적절성 여부 : Joinnode_id 적절성 여부			
도곽경계	노드유형(106) 적절성 여부 : 인접링크수 체크			
	노드유형(106) 적절성 여부 : 인접링크의 방향성 체크			
	노드유형(106) 적절성 여부 : 인접링크의 속성값 변경 여부			
	노드유형(105) 적절성 여부 : 인접링크수 체크			
행정경계	노드유형(105) 적절성 여부 : 인접링크의 방향성 체크			
	노드유형(105) 적절성 여부 : 인접링크의 속성값 변경 여부			
	Not Null 필드 검수			
테이블 적절성	테이블 필드 자료형 적절성 여부			
	테이블 필드 코드값 적절성 여부			

제4절 교통주제도 구축 결과

1. 교통주제도 구축결과

가. 지역별 교통주제도 구축결과

- 기 구축된 교통주제도에서 울릉도, 육로 미연결 지역(도서지역)을 제외한 전국에 대해 현장조사자료를 기반으로 위치, 속성정보를 추가 및 갱신함
- 기 구축된 교통주제도와 구축결과를 비교하면 기존의 77,024km에서 80,902km로
 3,878km가 증가되었으며, 지역별 전년대비 증감내역은 〈표 3-9〉와 같음

<표 3-9> 지역별 전년대비 증감내역

단위: km

지 역	2005년도	2006년도	증·감 내역
계	77,024	80, 902	3, 878
서울특별시	2, 323	2, 372	49
 부산광역시	1, 412	1, 460	48
대구광역시	1, 326	1, 389	63
 인천광역시	1, 466	1,509	43
광주광역시	1,067	1, 101	34
 대전광역시	933	1,029	96
 울산광역시	1, 161	1, 315	154
 경기도	10, 512	11, 221	709
 강원도	7, 282	7, 604	322
	6, 898	7, 152	254
충청북도	5, 541	5, 683	142
전라남도	8, 754	9,009	255
 전라북도	7, 129	7, 293	164
 경상남도	8, 428	9, 254	826
경상북도	10, 703	11, 336	633
제 주 도	2,089	2, 174	85

나. 도로등급별 교통주제도 구축결과

○ 도로등급별 구축연장의 증감내역을 보면, 시군도 등 기타도로가 33,081km 에서 35,314km로 2,233km 증가하였으며, 지방도 638km, 고속국도/고속화도로 449km, 특별시도/광역시도 410km, 일반국도 152km 순으로 증가하였음

<표 3-10> 2006년 교통주제도의 시도별/도로등급별 구축결과

단위: km

								르케. KIII
등급 지역	고속국도	일반국도	특별/광역 시도	국가지원 지방도	지방도	기타 도로	고속국도 연결램프	계
서울특별시	66	147	2,013	9	2	1	134	2, 372
부산광역시	56	123	1, 174	58	28	0	21	1,460
대구광역시	188	105	994	20	42	1	39	1, 389
인천광역시	169	83	1, 152	30	26	2	48	1,509
광주광역시	34	93	918	9	27	1	18	1, 101
대전광역시	139	89	710	29	32	3	28	1,029
울산광역시	82	207	931	31	44	11	9	1, 315
 경기도	938	1,663	5	913	1, 412	6,056	234	11, 221
강원도	575	2, 029	0	254	1, 184	3, 501	62	7,604
충청북도	517	1,051	0	265	1,082	2, 708	59	5, 683
충청남도	598	1, 423	0	302	1, 326	3, 436	68	7, 152
전라 북 도	555	1,510	0	280	1, 240	3, 650	57	7, 293
전라남도	424	2,003	1	257	1, 375	4, 898	52	9,009
- 경상북도	874	2, 478	0	674	2, 081	5, 150	79	11, 336
 경상남도	974	1,693	2	311	1,664	4, 469	140	9, 254
제주도	0	485	0	37	171	1, 481	0	2, 174
계	6, 188	15, 182	7, 898	3, 478	11, 738	35, 370	1,049	80, 902

<표 3-11> 도로등급별 전년대비 증감내역

단위: km

구 분	2005년도	2006년도	증·감 내역
고속국도/도시고속화도로	7, 210	7, 659	449
일반국도	15, 027	15, 179	152
트별시도/광역시도	7, 166	7, 576	410
국가지원지방도	3, 441	3, 437	-4
지방도	11, 099	11, 737	638
기타 도로	33, 081	35, 314	2, 233
계	77, 024	80, 902	3, 878

주: 1) 고속국도 및 도시고속화도로는 상·하행 양선 연장을 합한 연장임

제5절 교통주제도 세계측지좌표계 전환

1. 개요

- 건설교통부 및 국토지리정보원에서는 기본측량 및 공공측량의 성과에 해당하는 지리 정보에 대하여 측량법에 따라 측지좌표계의 기준을 전환하는 사업을 추진하고 있음
 - 측량법 제5조(측량의 기준) 및 동 시행령 제2조의5(세계측지계 등)
- 기존법령에서 제시한 2007년까지의 변환시기를 2006년 12월에 개정된 측량법에서는 2009년으로 연기하였고 해당 관련기관에서는 체계적인 전환계획수립 및 시행을 추진 하고자 함
- 교통주제도는 이와 관련하여 기존 측량성과에 대한 세계측지좌표계로의 전환 현황 및 향후 계획을 파악하고 체계적인 계획을 수립하여 교통주제도가 원활히 세계측지계로 전환될수 있도록 추진하고자 함
- 이에 따라 2006년 사업에서는 세계측지좌표계와 교통주제도의 지역좌표계를 비교분석하고 좌표계 전환에 따른 검토사항 및 좌표변환 프로그램을 개발하여 시범적으로 전국통판 교통주제도에 적용, 전환시 발생하는 오차 및 문제점을 파악하고 이를 바탕으로 체계적인 계획수립에 활용하고자 함

가. 측지좌표계 정의

- 즉지좌표계란 지구상에 있는 위치를 나타내는 체계이며 이는 지역측지계(동경측지계)
 와 세계측지계로 구분됨
- 지역측지좌표계는 각 지역 국가마다 기준을 설정하여 각 국가지역 측량원점으로부터그 나라를 측량하여 지도제작 등에 활용하는 기준을 의미함
- 세계측지좌표계는 지역측지좌표계와는 달리 세계를 기준으로 하여 공통으로 사용할수 있는 기준타원체와 기준점을 정의한 것임, 기준타원체는 GRS80 타원체로 정의되며 지구 중심 좌표계를 채택하고 있음

나. 좌표계 비교

- 교통주제도는 NGIS 수치지도를 기반으로 최초에 구축되었으며 좌표계는 교통 분야의 활용을 위해 단일원점 좌표계를 사용하고 있음
- 국토지리정보원에서 제시한 세계측지좌표계는 기준타원체로 GRS80 타원체를 사용하며 데이텀은 ITRF2000을 채택하였음
- 교통주제도를 세계측지좌표계로 전환할 경우, 기준타원체와 데이텀을 변환하고 기존 의 평면직각좌표계에서의 투영원점 및 기준점 좌표는 동일하게 사용될 예정임
- 각 좌표계의 특징은 〈표 3-12〉와 같음

<표 3-12> 지역측지좌표계와 세계측지좌표계 비교

분류	교통주제도	세계측지좌표계		
기준 타원체	Bessel 1841 회전타원체 - 장반경 : 6,377,397.155m - 단반경 : 6,356,078.963m - 편평율 : 1/299.152813	GRS 1980 회전타원체 - 장반경 : 6,378,137.00m - 단반경 : 6,356,752.31m - 편평율 : 1/298.257222		
축척계수	0. 9999	0. 9996		
데이텀	Korean 1985 데이텀	ITRF 2000 데이텀		
투영 원점	단일원점 체계 - 128E, 38N	- 서부원점 : 125E, 38N - 중부원점 : 127E, 38N - 동부원점 : 129N, 38N - 동해원점 : 131N, 38N		
투영법	TM 좌표계	TM 좌표계		
투영원점 좌표	False Easting : 400,000m False Northing : 600,000m	False Easting : 200,000m False Northing : 500,000m (제주도인 경우 False Northing은 550,000m)		
중앙자오선 축척계수	0. 9999	1.0000		

다. 세계측지좌표계 전환의 필요성

- 기존 Bessel 타원체는 수평위치와 높이위치가 이원화되어 있으며 기준점수가 많아 유지관리가 곤란하여 사용에 불편함이 있음
- 최근 활발히 활용되고 있는 GPS(위성측위시스템)는 지구중심좌표계를 기반으로 구축 된 것으로서 이를 활용한 측량 및 응용시스템에 있어서 세계측지좌표계 도입은 필수 적임
- 측량기술의 세계화에 대응하고, 자료의 호환 및 확장성을 향상시키기 위해 세계측지
 좌표계 도입이 필요함
- 대한측량협회에서 발표한 세계측지좌표계 전환에 따른 지역별 위치의 변화량은 〈그림 3-6〉과 같음

구분	위도차	경도차	A Q 型 お 基 世 화 守
서울지역	10.08"	-7.40 "	448 ± 24
강릉지역	10.15"	-8.37"	441 HG AS 444 HG AS 444 45 HG AN 444 HG 444
대전지역	10.51"	-7.69"	AB: 18.000 AB: 18.317 AL: -4.01 AL:
대구지역	10.97"	-8.28"	AB 10 100 00
목포지역	11.80"	-7.32"	VI F S S S S S S S S S
부산지역	11.34"	-7.94"	940 학원 단체 작업 소만 영상 조도 기본 수가
			An 11500
			(B) (B) (B) (B)

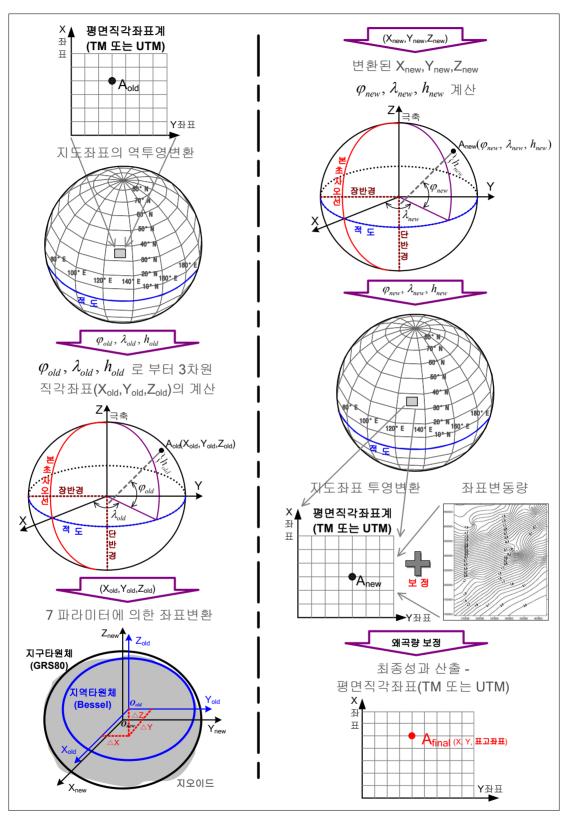
<그림 3-6> 지역별 좌표 변화량(대한측량협회, 2000)

2. 세계측지좌표계 변환 방법 및 기준

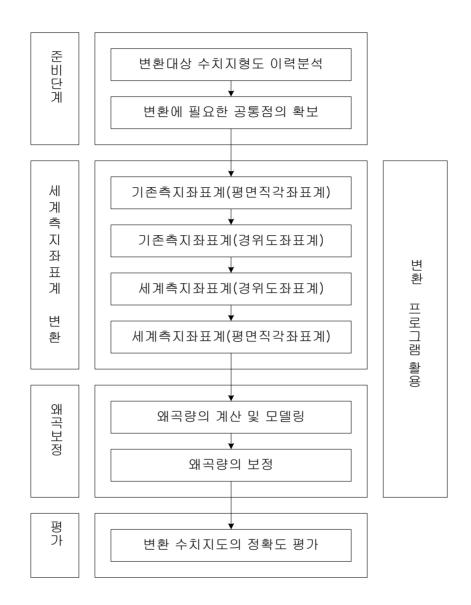
가. 세계측지좌표계 변환 기준

- ㅇ 세계측지좌표계 변환은 국토지리정보원의 지침을 따름
 - 공공측량 세계좌표계 전환 기술지침(2006.5)
- 좌표계 변환에 필요한 국가좌표변환계수와 변환식은 국토지리정보원 고시 제2003-497 호에서 제시한 Molodensky-Badekas 모델에 의하여 결정된 값과 식을 사용함
- 고시된 국가좌표변환 계수와 변환식은 〈표 3-13〉, 〈표 3-14〉와 같음

- 정변환 : 기존측지좌표계로부터 세계측지좌표계로 변환


- 역변환 : 세계측지좌표계로부터 기존측지좌표계로 변환

<표 3-13> 국가 좌표변환 계수


 구분	평행이동량(m)		회전량(″)		축척변화량(ppm)		
	$\triangle \mathbf{x}$	△y	△z	Rx	Ry	Rz	λ
변환계수	-145. 907	505. 034	685. 756	-1.162	2.347	1.592	6 . 342

<표 3-14> 좌표계 변환계수 적용식

구분	변환계수 적용식			
정변환	$\begin{bmatrix} X \\ Y \\ Z \\ Z \end{bmatrix} = \begin{bmatrix} X \\ Y \\ O \\ Z \end{bmatrix} + \begin{bmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{bmatrix} + (1 + \lambda) \begin{bmatrix} 1 & R_z & -R_y \\ -R_z & 1 & R_x \\ R_y & -R_x & 1 \end{bmatrix} \begin{bmatrix} X_b - X_b \\ Y_b - Y_o \\ Z_b - Z_o \end{bmatrix}$			
역변환	$\begin{bmatrix} X_b \\ Y_b \\ Z_b \end{bmatrix} = \begin{bmatrix} X_o \\ Y_o \\ Z_o \end{bmatrix} + \begin{bmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{bmatrix} + (1+\lambda)^{-1} \begin{bmatrix} 1 & R_z & -R_y \\ -R_z & 1 & R_x \\ R_y & -R_x & 1 \end{bmatrix}^T \begin{bmatrix} X_g - X_o \\ Y_g - Y_o \\ Z_g - Z_o \end{bmatrix}$			
X_g, Y_g, Z_g : GRS80 타원체 상의 3치원 직각좌표(세계측지좌표계) X_b, Y_b, Z_b : Bessel 타원체 상의 3치원 직각좌표(한국측지좌표계) X_o, Y_o, Z_o : 좌표변환 기준좌표				
변환수식 설명	Bessel → GRS80 기준좌표	GRS80 → Bessel 기준좌표		
	$X_o = -3,159,521.31$	X _o = -3, 159, 666. 86		
	$Y_o = 4,068,151.32$	Y_o = 4,068,655.70		
	Z _o = 3,748,113.85	Z _o = 3,748,799.65		

<그림 3-7> 세계측지계 좌표변환 개념도(공공측량 세계좌표계전환 기술지침)

<그림 3-8> 세계측지계 좌표변환 흐름도(공공측량 세계좌표계전환 기술지침)

3. 교통주제도 세계측지좌표계 전환시 고려사항

가. 교통주제도 구축 공정

- 교통주제도는 문헌자료 및 현장조사자료를 바탕으로 구축되는데, 1:25000 도엽을 관리의 기준으로 함
- 단위도엽을 기준으로 자료를 분할하여 작업을 수행하고 있으며 실제로 도곽선을 기준으로 도로중심선이 분할되어 있으며 해당 분할 위치에 도곽경계점이 존재함
- 세계측지좌표계로 전환을 수행하면 도곽경계가 달라지므로 모든 도곽경계에 대한 병합작업을 수행하고 변환된 도곽을 기준으로 새롭게 도로중심선을 분할하는 과정을 거쳐야 함

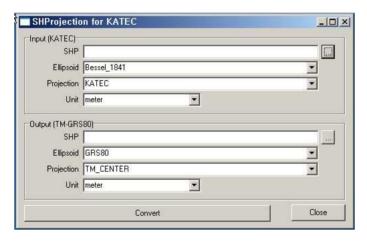
나. 교통분석용 네트워크에의 반영

- 교통분석용 네트워크는 매년 갱신되고 있는 교통주제도의 신설 및 변경도로를 반영하여 구축하고 있으며 좌표계도 동일하게 사용하고 있음
- 교통주제도를 세계측지좌표계로 전환할 경우, 교통분석용 네트워크도 동일한 과정을
 통해 좌표계를 변환해야만 향후 신설 및 변경되는 도로의 정보를 그대로 반영할 수 있음
- 교통분석용 네트워크를 활용하는 다수의 사용자들과 기존의 성과물을 변환하는 과정
 에서 발생할 수 있는 문제점들을 고려해야 함

다. 교통주제도의 배포 및 활용시스템

- 교통주제도는 교통체계효율화법에 의해 공공목적의 사업을 수행하는 기관에 무상으로 제공되고 있으며, 현재 다수의 공공사업분야의 응용시스템에 기본지도로 활용되고 있음
- 교통주제도의 자료 및 좌표계 등을 기본으로 구축된 응용시스템의 경우, 기본지도의 좌표계가 변경되면 기존에 사용하던 시스템의 기능 및 산출물에 영향을 미칠 수 있음
- 교통주제도의 좌표계를 변경하기에 앞서 관련기관에 대한 설문조사 등을 통해 변환시 발생하는 문제점을 파악하고 이를 고려하여 변환작업을 수행해야 함

4. 세계측지좌표계 변환 프로그램 개발 결과


가. 개발환경

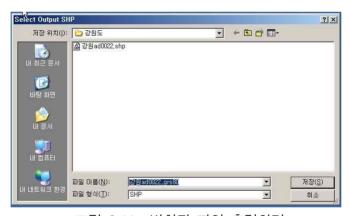
ㅇ 세계측지좌표계 변환 프로그램 개발환경은 다음과 같음

- 작업환경 : Microsoft Windows XP

- 개발언어 : Visual C++ Builder (Boland)

- 좌표변환 방법 : Molodensky-Badekas모델에 의한 7변수 상사변환과 왜곡모델링 결과의 보정에 의한 변환
- o 기 고시된 좌표계 변환지침에 의한 좌표변환 프로그램 개발(국토지리정보원 고시 2006.5)
- 교통주제도 전국통판을 기준으로 국토지리정보원이 제시한 좌표변환계수를 사용함

<그림 3-9> 세계측지좌표계 변환 프로그램


나. 주요 구현화면 설명

- 1) 좌표변환 입력파일 선택
 - 교통주제도 전국통판 파일(Shape files) 선택
 - o 입력된 교통주제도의 타원체, 투영좌표계, 거리단위(미터) 선택

<그림 3-10> 입력파일 선택 화면

- 2) 좌표변환 출력파일 지정 및 설정
 - ㅇ 타원체, 투영좌표계 및 원점, 거리단위(미터) 선택
 - 변환될 파일명(Shape files)을 선택함

<그림 3-11> 변환된 파일 출력화면

3) 좌표변환 결과

- 기존 교통주제도와 변환된 세계측지계 교통주제도의 좌표는 지역에 따라 다르지만 약 350m의 차이가 있으며, 북방향으로 약 +300m, 동방향으로 약 -200m 이동함
- 좌표계 전환에 따른 단순한 위치의 이동량은 의미가 없으며 실제 GPS 등을 활용한 기준점 측량성과와 교통주제도의 변환결과를 비교 검토해야만 좌표계 전환 후 발생하 는 오차를 검증할 수 있음